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The thesis concerns optimization of some non-convex functionals arising in Infor-

mation Theory. Computation of achievable regions or outer bounds to capacity

regions in Information Theory can be formulated as optimization of certain non-

convex functional family.

The first part is about evaluating forward hypercontractivity and reverse hy-

percontractivity region for the pair of variables (X, Y ) where X is a uniformly

distributed binary random variable and Y (a ternary random variable) is obtained

by passing X through a binary erasure channel (BEC), for a non-trivial range of

parameters. Our technique uses an equivalent characterization of forward hyper-

contractivity and reverse hypercontractivity using Kullback-Leibler Divergence,

which is in general a non-convex functional optimization problem. A similar anal-

ysis also recovers the celebrated results for the pair of variables (X, Y ) where X

is a uniformly distributed binary random variable and Y (a binary random vari-

able) is obtained by passing X through a binary symmetric channel (BSC), also

called the Bonami-Beckner inequality. This optimization problem is also equiva-

lent to the computation of the capacity region for the Gray-Wyner source coding

problem of network information theory.

The second part starts from a new non-convex weighted sum rate outer bound

for the Körner and Marton’s sum modulo two problem. In a seminal work Körner

and Marton showed that linear codes achieved the optimal rates and outperformed

random coding and binning based arguments. Körner also showed the optimality

of Slepian-Wolf based random coding for the same problem for a different class

of pairwise distributions. By optimizing over this outer bound, we could show
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that the optimal sum rate is given by random linear codes for a larger class of bi-

nary distributions, thus extending the known optimality results for this problem.

Via using similar ideas, we could derive outer bounds for Quadratic Gaussian

Distributed Source Coding Problem and Quadratic Gaussian CEO Problem, and

present alternative proofs for the optimality of Berger-Tung inner bound in these

two settings.

The third part is related to the non-convex functional H(Yt)−γH(Xt), where

Xt := X +
√
tZ is in the set of distributions along the heat flow and Yt is

obtained by passing Xt through an additive Gaussian noise channel. We show

that if t is re-scaled so that H(Xt) is linear in t, then H(Yt) is convex in t.

This problem is equivalent to showing the log-convexity of Fisher Information,

resolving a conjecture in [15] and implicitly in the 1966 paper [39] by McKean.
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摘摘摘要要要：：： 本畢業論文主要考慮的是信息論中出現的一些非凸函數的優化問題。

計算信息論中的信道容量的可達到的編碼速率區域或者其外界的問題，能夠轉

化為某種特定類型的非凸函數族的優化問題。

第一部分是關於在某些非平凡的參數範圍內，計算forward hypercontractiv-

ity還有reverse hypercontractivity的區域，考察對象是一組XY隨機變量：X是

二元平均分佈的隨機變量，Y是把X通過一個二元擦除信道（BEC）獲得的三

元隨機變量。我們使用的方法是借助於forward hypercontractivity還有reverse

hypercontractivity的用Kullback-Leibler Divergence表達的等價描述，將問題轉

換為一個非凸函數優化問題。類似的分析也可以得到Bonami-Beckner不等式。

這個著名結果考察的對象是一組XY隨機變量：X是二元平均分佈的隨機變

量，Y是把X通過一個二元對稱信道（BSC）獲得的二元隨機變量。這個優化

問題同時也是等價於網絡信息論中Gray-Wyner源碼壓縮問題的信道容量的計

算。

第二部分開始於我們證明出來的一個新的關於Körner還有Marton的模二

和的源碼壓縮問題的非凸的加權源碼壓縮率和的外界。Körner和Marton在一

片開創性的論文裡面證明了隨機線型碼可以打敗隨機碼和隨機哈希函數的

壓縮方法，並且在輸入源分佈是某些分佈的情況下達到了最優的源碼壓縮

率。Körner也證明了Slepian-Wolf創造的隨機碼和隨機哈希函數的壓縮方法在

輸入源分佈是其他特定分佈的情況下可以達到最優的源碼壓縮率。通過優化

我們的新的外界，我們可以證明對於更多的輸入源分佈隨機線型碼可以達到

最優的加權源碼壓縮率和，因此擴展了這個問題已知的最優源碼壓縮率的結

果。通過使用類似的思路，我們可以推導出適用於二次高斯分布式源碼壓縮問

題還有二次高斯CEO源碼壓縮問題的壓縮速率的外界，並且給出這兩種設定

下Berger-Tung發明的可達到的源碼壓縮率區域的最優性的另一種證明方法。

第三個部分是關於非凸函數H(Yt)−γH(Xt)，這裏信道輸入Xt := X+
√
tZ的

分佈服從滿足熱流方程式的解，信道輸出Yt則是服從把Xt通過一個加性高斯

白噪聲信道獲得的輸出信號的分佈。我們證明了如果把t重新縮放使得信道輸

入的熵是t的線型函數，那麼信道輸出的熵就是t的凸函數。這個問題等價於證

明Fisher信息的log凸性。我們的這個工作解決了耿艷林和程帆2015發表的論文

裡面的一個猜想。這個猜想也隱含地出現在1966年Mckean的論文裡面。
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Notations

Mathematics

iff if and only if

q � p absolute continuity of measure q with respect to measure

p

i.i.d. identically and independently distributed

⊕ Minkowski sum

R real line

Rd the d-dimensional Euclidean space

Rd
+ the nonnegative orthant of the d-dimensional Euclidean

space

Rd
++ the strictly positive orthant of the d-dimensional Eu-

clidean space

N natural number

N+ positive natural number

x̄ 1− x

D domain of function

Cx[f ] the upper concave envelope of the func-

tion f(x) over domain D, i.e., Cx[f ](x0) =

inf {g(x0) : g(x) is concave in x ∈ D, g(x) ≥ f(x)∀x ∈ D}

Kx[f ] the lower convex envelope of the func-

tion f(x) over domain D, i.e., Kx[f ](x0) =

inf {g(x0) : g(x) is convex in x ∈ D, g(x) ≤ f(x)∀x ∈ D}

[i : 2nR] the set {i, i + 1, · · · , 2dnRe}, where dnRe is the smallest

integer ≥ nR
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[i : 2nR) the set {i, i + 1, · · · , 2bnRc}, where bnRc is the integer

part of nR

log+ x max{log x, 0}

ln+ x max{lnx, 0}

Probability Theory

X, Y, · · · scalar random variables

X ,Y , · · · the finite sets where the discrete random variables

X, Y, · · · take values from

x, y, · · · constants or values of scalar random variable

|X |, |Y|, · · · size of the finite sets X ,Y , · · ·

Xj
i sequence of random variables (Xi, Xi+1, · · · , Xj) with

length j − i+ 1 for 1 ≤ i ≤ j

Xj sequence of random variables (X1, X2, · · · , Xj) with

length j for j ≥ 1

X × Y the Cartesian product of two finite sets X and Y

X n the n-th Cartesian product of the finite set X∏n
i=1Xi X1 ×X2 × · · · × Xn

pX the probability vector [pX(x)]x∈X of discrete random

variable X indexed by x ∈ X with each entry denoted

as pX(x)

pXY the joint probability vector [pXY (x, y)]x∈X ,y∈Y of discrete

random variables (X, Y ) indexed by (x, y) ∈ X×Y , with

each entry denoted as pXY (x, y)

pY |X the conditional probability vector [pY |X(y|x)]x∈X ,y∈Y of

discrete random variable X given Y indexed by (x, y) ∈

X × Y , with each entry denoted as pY |X(y|x)

pY |X=x the conditional probability vector [pY |X(y|x)]y∈Y of Y

given X = x, indexed by y ∈ Y and each entry denoted

as pY |X(y|x)

pXpY |X the probability vector [pX(x)pY |X(y|x)]x∈X ,y∈Y

pXpY the probability vector [pX(x)pY (y)]x∈X ,y∈Y

p⊗nX the nth Kronecker product of the probability vector pX

x



Information Theory

W channel

WY |X stochastic matrix [W (y|x)]x∈X ,y∈Y where rows are in-

dexed by x ∈ X , columns are indexed by y ∈ Y and

each entry is denoted as W (y|x)

W⊗n
Y |X the nth Kronecker product of the stochastic matrixWY |X

C code

C capacity for channel coding probelm

R optimal rate region for source coding problem

A achievable rate region

BEC(ε) the binary erasure channel WY |X with input X ∈ {0, 1}

and output Y ∈ {0, E, 1}, whose conditional probability

law of Y given X is given by WY |X(E|0) = WY |X(E|1) =

ε,WY |X(0|0) = WY |X(1|1) = 1− ε, ε ∈ [0, 1]

BSC(ρ) the binary symmetric channel WY |X with input X ∈

{0, 1} and output Y ∈ {0, 1}, whose conditional prob-

ability law of Y given X is given by WY |X(0|0) =

WY |X(1|1) = 1+ρ
2
,WY |X(1|0) = WY |X(0|1) = 1−ρ

2
, ρ ∈

[−1, 1]

p
BEC(ε)
XY X is binary and uniformly distributed, and Y is obtained

by passing X through a binary erasure channel BEC(ε)

to produce Y . The joint distribution of (X, Y ) will be

denoted as p
BEC(ε)
XY

p
BSC(ρ)
XY X is binary and uniformly distributed, and Y is ob-

tained by passing X through a binary symmetric channel

BSC(ρ) to produce Y . The joint distribution of (X, Y )

will be denoted as p
BSC(ρ)
XY

DSBS Doubly Symmetric Binary Source. The joint distribution

of (X, Y ) follows p
BSC(ρ)
XY

xi



BISO(~p) X is binary and uniformly distributed, and Y is obtained

via a channel WY |X that satisfies a symmetry property,

WY |X(i|1) = WY |X(−i|0) = pi, for integer i ∈ [−K :

K]. The joint distribution of (X, Y ) will be denoted as

BISO(~p), where ~p = [pi],−K ≤ i ≤ K

H2(x) the binary entropy function H2(x) := −x log x− x̄ log x̄

H−1
2 the inverse of binary entropy function H−1

2 : [0, 1] 7→

[0, 1
2
]

H(X) the entropy of a discrete random variable X

taking values from a finite set X , H(X) :=

−
∑

x∈X pX(x) log pX(x)

h(X) the differential entropy of a random variable X taking

values from R, h(X) = −
∫
R f(x) ln f(x)dx
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Chapter 1

Introduction

Shannon’s seminal work [54] laid down the theoretical foundations of information

theory. The idea of the point-to-point communications problem and his source

and channel coding theorems have many profound implications in areas like wire-

less communications and data compression. Network information theory, on the

other hand, focuses on the limits of reliable communication over a network with

multiple senders and receivers, and some channel transition matrix that models

the effects of the interference and noise in the network. One fundamental problem

is to determine whether certain communication strategies could achieve the limit

of reliable communication, which could be reduced to testing certain properties

of some non-convex information-theoretic functionals. This thesis will focus on

such non-convex functionals.

Let X be a discrete random variable that takes values from some finite set

X , with the probability mass function denoted by pX . The entropy of a discrete

random variable X, H(X), is defined as

H(X) :=
∑
x∈X

pX(x) log pX(x)

where the logarithm is base 2.

Given a vector of discrete random variables Xn := (X1, · · · , Xn) taking values

from some finite set ⊗ni=1Xi, and for any ~d := (dxn : xn ∈ ⊗ni=1Xi), which is an

arbitrary real-valued vector, we are interested in computing the following function

G(~d):

G(~d) := max
pXn

 ∑
S⊂[1:n]

αSH(XS)− EpXn (~d)

 (1.1)

1



2 CHAPTER 1. INTRODUCTION

where S is a subset of [1 : n], XS denotes the set {Xi : i ∈ S}, and αS ∈ R

depends on S.

Here EpXn (~d) =
∑

xn∈⊗ni=1Xi
pXn(xn)dxn . Computing G(~d) requires evaluating

the global maximizer over pXn of the functional
∑

S⊂[1:n] αSH(XS) − EpXn (~d),

which can, in general, be non-convex.

The evaluation of certain achievable rate regions or bounds to the capacity

region canonically involves functionals of the above form (as will be made clear

in the rest of this chapter). Further, optimality of certain achievable regions can

also be cast in the language of properties of the maximizers of the above function-

als. For instance, if the global optimizers of a natural extension of a functional

(corresponding to an achievable rate region) defined on so-called product-spaces

are product distributions, then the achievable rate regions can be shown to be

optimal in many settings.

The rest of this chapter will try to illustrate how the above family of function-

als arise in communication settings, as well as elucidate some of the key questions

related to the functionals that are of interest.

1.1 Some Communication Models

1.1.1 Point-to-point channel coding

In the celebrated work [54], the point-to-point communication model was first

proposed by Shannon. Figure 1.1 depicts this model, where a sender wishes to

communicate reliably with a receiver through certain channel. We are interested

in maximizing the amount of the information that can be reliably transmitted

from the sender to the receiver.

M ∈ [1 : 2nR] sender: f (n) DMC: WY |X receiver: g(n) M̂ ∈ [1 : 2nR]
Xn Y n

Figure 1.1: Point-to-point communication channel model

More specifically, a channel, denoted by W , is a stochastic mapping from X

to Y that will output symbol y ∈ Y given some input symbol x ∈ X with certain

probability. When both X and Y are finite, the channel is called a discrete

channel.



1.1. SOME COMMUNICATION MODELS 3

For n ∈ N+, the n uses of a discrete channel is defined as the stochastic

mapping from X n to Yn specified by a stochastic matrix WY n|Xn , where X n and

Yn are the n-th Cartesian product of X and Y respectively, and WY n|Xn is the

stochastic matrix where rows are indexed by elements in X n, columns are indexed

by elements in Yn and each entry WY n|Xn(yn|xn) is the conditional probability

that the channel outputs yn given certain input xn. When n = 1, we will simply

write the stochastic matrix WY 1|X1 as WY |X .

A discrete channel is called a discrete memoryless channel (DMC), if for any

n ∈ N+ the stochastic matrix WY n|Xn of the n uses of the channel is the nth

tensor product of the stochastic matrix WY |X of the channel. We will use WY |X

to denote a DMC omitting the input set X and the output set Y if there is no

danger of confusion, and the n uses of a DMC will be denoted as W⊗n
Y |X .

Let R ∈ R+and n ∈ N+, a (n,R) code for a DMC WY |X is defined as the

function pair (f (n), g(n)), where f (n) is some mapping from [1 : 2nR] to X n called

encoding function, and g(n) is some mapping from Yn to [1 : 2nR] called decoding

function. Here R is called the rate of the code, and n is called the block-length

of the code.

In the model shown in Figure 1.1, the channel is a DMC WY |X and a (n,R)

code C is applied in the communication: the message M is distributed uniformly

in the set [1 : 2nR]. The sender will map the generated message M to a sequence

Xn by the encoding function f (n), and pass the Xn to the receiver through the n

uses of a DMC WY |X . The receiver maps the output sequence Y n back to some

estimation of message M , M̂ ∈ [1 : 2nR], by the decoding function g(n).

One way to measure the performance of this (n,R) code for the DMC W (Y |X)

is to compute the average error probability thatM 6= M̂ , defined as Pe(C,WY |X) :=

P (M 6= M̂).

A rate R is achievable for a DMC WY |X if there exists a sequence of (n,R)

codes Cn such that limn→∞ Pe(Cn,WY |X) = 0. The capacity of a DMC WY |X ,

denoted as C (WY |X), is defined as the closure of the set of all achievable rates.

Intuitively speaking, C (WY |X) measures how much information can be transmit-

ted reliably from the sender to the receiver.

In [54], Shannon used the mutual information I(X;Y ) between two random

variables X, Y to express the capacity for a DMC:
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Theorem 1.1. The capacity of a DMC WY |X is given by

C (WY |X) = {R ≥ 0 : R ≤ max
pX

I(X;Y )}. (1.2)

where I(X;Y ) :=
∑

x∈X ,y∈Y pXY (x, y) log pXY (x,y)
pX(x)pY (y)

.

Remark 1.1. Notice that I(X;Y ) is a concave function in pX , so C (WY |X) can

be computed directly from the stochastic matrix WY |X of the DMC. Such a

characterization of the capacity region, without involving multiple uses of the

channelW , eliminates the computation difficulty in finding the limit when n→∞

and is informally called the single-letter characterization of the capacity region.

One can use random coding and joint typicality decoding to prove that when

R < maxpX I(X;Y ), there exists a sequence of (n,R) codes Cn such that limn→∞

Pe(Cn,WY |X) = 0. In this case, we say that the set {R ≥ 0 : R < maxpX I(X;Y )}

is an achievable rate region for the DMC WY |X , denoted as A (WY |X).

When the capacity C (WY |X) matches the closure of the achievable rate region

A (WY |X), we will say that the achievable rate region A (WY |X) is optimal.

1.1.2 Multiple Access Channel Coding

M1 ∈ [1 : 2nR1 ] sender 1: f
(n)
1

M2 ∈ [1 : 2nR2 ] sender 2: f
(n)
2

DM-MAC: WY |X1,X2 receiver: g(n) M̂1, M̂2

Xn
1

Xn
2

Y n

Figure 1.2: Multiple access channel coding

A natural extension for the point-to-point communication model is a multiple

access communication model shown in Figure 1.2, where each sender wishes to

transmit an independent messages reliably to the receiver. This is first alluded

to in Shannon’s paper [53].

Similarly to the point-to-point channel coding, one could define a discrete

memoryless multiple access channel (DM-MAC) WY |X1,X2 and a (n,R1, R2) code

C := (f
(n)
1 , f

(n)
2 , g(n)) for this multiple access communication model. Figure 1.2

shows how a (n,R1, R2) code C is applied in the communication over a DM-MAC

WY |X1,X2 .
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To measure the performance of the code C for this DM-MAC WY |X1,X2 , the

average probability of error Pe(C,WY |X1,X2) := P ((M1,M2) 6= (M̂1, M̂2)) is em-

ployed. A rate pair (R1, R2) is achievable for a DM-MAC WY |X1,X2 if there exists

a sequence of (n,R1, R2) code Cn such that limn→∞ Pe(Cn,WY |X1,X2) = 0. The ca-

pacity of a DM-MAC WY |X1,X2 is defined as the closure of the set of all achievable

rate pairs (R1, R2) for this DM-MAC, denoted as C (WY |X1,X2).

Ahlswede [3], [1] and Liao [37] established a single-letter characterization for

C (WY |X1,X2).

Theorem 1.2. The capacity region of the DM-MAC WY |X1,X2 is the set of rate

pairs (R1, R2) satisfying

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q)

(1.3)

for some probability mass function (pmf) pQpX1|QpX2|Q, where |Q| ≤ 2.

Remark 1.2. Notice that the Q in this theorem 1.2 doesn’t appear in the original

communication setting, but is needed in making the rate region convex. Such

random variable is called auxiliary random variable.

Denote the achievable rate region for a DM-MAC WY |X1,X2 , i.e., the interior

of the set of rate pairs (R1, R2) satisfying inequalities (1.3), as A (WY |X1,X2).

1.1.3 Broadcast Channel Coding

M0 ∈ [1 : 2nR0 ]

M1 ∈ [1 : 2nR1 ]

M2 ∈ [1 : 2nR2 ]

sender: f (n) DM-BC: WY,Z|X

receiver 1: g
(n)
1

receiver 2: g
(n)
2

M̂01, M̂1

M̂02, M̂2

Xn

Y n

Zn

Figure 1.3: Broadcast channel coding

As another natural extension for the point-to-point channel coding, a broad-

cast channel coding is shown in figure 1.3, where one sender wishes to transmit

two private messages to each receiver and a common message to both receivers.

This communication setting was first introduced by Cover in [18].
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Similarly to the point-to-point channel coding, one could define a discrete

memoryless broadcast channel (DM-BC) WY,Z|X and a (n,R0, R1, R2) code

C := (f (n), g
(n)
1 , g

(n)
2 ) for broadcast channel coding. Figure 1.2 shows how a

(n,R0, R1, R2) code C is applied in the communication over a DM-BC WY,Z|X .

We employ the average probability of error criterion Pe(C,WY,Z|X) :=

P ((M0,M1) 6= (M̂01, M̂1) or (M0,M2) 6= (M̂02, M̂2)) to measure the ”reliability”

of a code. A rate tuple (R0, R1, R2) is achievable for a DM-BC WY,Z|X if there

exists a sequence of (n,R0, R1, R2) code Cn such that limn→∞ Pe(Cn,WY,Z|X) = 0.

The capacity of a DM-BC WY,Z|X is defined as the closure of the set of all achiev-

able rate pairs (R0, R1, R2) for this DM-BC, denoted as C (WY,Z|X).

In 1979 [38], Marton used the idea of multicoding and joint typicality encoding

to give an achievable rate region for a DM-BC WY,Z|X :

Theorem 1.3 (Marton’s inner bound). A rate tuple (R0, R1, R2) is achievable

for a DM-BC WY,Z|X if

R0 < min{I(W ;Y ), I(W ;Z)},

R0 +R1 < I(W,U ;Y ),

R0 +R2 < I(W,V ;Z),

R0 +R1 +R2 < min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

(1.4)

for some pmf pUVW and function x(u, v, w), where |W| ≤ |X |+4, |U| ≤ |X |, |V| ≤

|X |.

Remark 1.3. The cardinality bounds on the region was determined in [28].

Denote this achievable rate region by A (WY,Z|X).

Open Question: Is A (WY,Z|X) = C (WY,Z|X) for all WY,Z|X?

1.1.4 Gray-Wyner Source Coding Setting

Another fundamental setting in information theory is communication of uncom-

pressed sources over multiple noiseless channels, and we are interested in how

much can be compressed by encoding the sources separately.

Consider a 2-component discrete memoryless source (2-DMS), (X, Y ), which

is defined as the source pair that generates an i.i.d. sequence of random vari-
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Sender 1: f
(n)
1

Sender 0: f
(n)
0

Sender 2: f
(n)
2

Decoder 1: g
(n)
1

Decoder 2: g
(n)
2

Xn, Y n

X̂n

Ŷ n

M1 ∈ [1 : 2nR1 )

M0 ∈ [1 : 2nR0 )

M2 ∈ [1 : 2nR2 )

Figure 1.4: Gray-Wyner Source Coding Setting

able pairs (Xi, Yi) from some finite set X × Y according to some joint dis-

tribution pXY . One distributed lossless source coding problem on a 2-DMS

(X, Y ) following distribution pXY , called Gray-Wyner source coding, is shown

in Figure 1.4. Similar to previous cases, one could define a (n,R0, R1, R2) code

C := (f
(n)
0 , f

(n)
1 , f

(n)
2 , g

(n)
1 , g

(n)
2 ) for this setup. The average probability of error

Pe(C, pXY ) := P (Xn 6= X̂n or Y n 6= Ŷ n) is used to measure the code performance

for this 2-DMS. A rate tuple (R0, R1, R2) is achievable for a 2-DMS if there exists

a sequence of (n,R0, R1, R2) code Cn such that limn→∞ Pe(Cn, pXY ) = 0. The

optimal rate region of Gray-Wyner source coding on a 2-DMS (X, Y ) is defined

as the closure of the set of all achievable rate tuples (R0, R1, R2), denoted as

R(pXY ).

Gray and Wyner in [29] gave a single-letter characterization for R(pXY ):

Theorem 1.4. The optimal rate region R(pXY ) for the Gray-Wyner source cod-

ing with 2-DMS (X, Y ) is the set of rate triplets (R0, R1, R2) such that

R0 ≥I(X, Y ;V ),

R1 ≥H(X|V ),

R2 ≥H(Y |V )

(1.5)

for some conditional pmf pV |XY with |V| ≤ |X ||Y|+ 2.

Denote the interior of the set of (R0, R1, R2) satisfying equations 1.5 as

AGW (pXY ).
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1.1.5 Lossless Source Coding with One Helper

Consider the distributed source coding problem depicted in Figure 1.5, where

two senders separately encode two correlated sources into two indexes, and trans-

mit the indexes to the receiver so that one of the sources can be reconstructed

losslessly at the receiver.

Sender 1: f
(n)
1

Sender 2: f
(n)
2

Receiver: g(n)Y n

Xn

Ŷ n
M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Figure 1.5: Lossless source coding with one helper

Similar to Gray-Wyner source coding, the source is a 2-DMS (X, Y ) following

distribution pXY . And one could define a (n,R1, R2) distributed source code C :=

(f
(n)
1 , f

(n)
2 , g(n)) for this setup.

Since the receiver aims to reconstruct sequence Y n losslessly, the average prob-

ability of error Pe(C, pXY ) := P
(
Ŷ n 6= Y n

)
is used to measure the performance

of the distributed source code C. A rate pair (R1, R2) is achievable for a 2-DMS

(X, Y ) if there exists a sequence of (n,R1, R2) distributed source codes Cn such

that limn→∞ Pe(C, pXY ) = 0. The optimal rate region for loseless source coding of

X with one helper observing Y is defined as the closure of the set of all achievable

rate pairs (R1, R2), denoted as R(pXY ).

Ahlswede and Körner [4] and Wyner [65] independently established the fol-

lowing singlet characterization:

Theorem 1.5. Let (X, Y ) be a 2-DMS following distribution pXY . The optimal

rate region R(pXY ) for loseless source coding of Y with a helper observing X is

the set of rate pairs (R1, R2) such that

R1 ≥H(Y |U),

R2 ≥I(U ;X)
(1.6)

for some conditional pmf pU |X , where |U| ≤ |X |+ 1.

Denote the interior of the set of rate pairs (R1, R2) satisfying inequalities (1.6)

as A (pXY ).
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1.1.6 Lossless Source Coding with Two Helpers

A natural question after lossless source coding with one helper is to consider a

distributed source coding network with two helpers, see [33], where three senders

separately encode three correlated sources into three indexes, and transmit the

indexes to the receiver so that one of the sources can be reconstructed losslessly

at the receiver.

In Figure 1.6, the source is a 3-DMS (X, Y, Z) following distribution

pXY Z . And one could define a (n,R0, R1, R2) distributed source code C :=

(f
(n)
0 , f

(n)
1 , f

(n)
2 , g(n)) for this setup.

Sender 0: f
(n)
0

Sender 1: f
(n)
1

Sender 2: f
(n)
2

Receiver: g(n)Zn

Xn

Y n

Ẑn
M1 ∈ [1 : 2nR0 )

M2 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Figure 1.6: Lossless source coding with two helpers

The average probability of error Pe(C, pXY Z) := P
(
Ẑn 6= Zn

)
is used to mea-

sure the performance of the distributed source code C. A rate pair (R0, R1, R2)

is achievable for a 3-DMS (X, Y, Z) if there exists a sequence of (n,R0, R1, R2)

distributed source codes Cn such that limn→∞ Pe(C, pXY Z) = 0. The optimal rate

region for loseless source coding of Z with two helpers observing Y and X is

defined as the closure of the set of all achievable rate pairs (R0, R1, R2), denoted

as R(pXY Z).

The single-letter characterization of R(pXY Z) is unknown in general. In this

thesis, we will consider the projection of R(pXY Z) onto the subspace where R0 =

0, that is, sender 0 is not allowed to send information on Zn to receiver.

In [55], a remarkable result by Slepian and Wolf showed that when Z = (X, Y )

random binning ideas can be used to achieve the following rate region:

R1 ≥ H(X|Y )

R2 ≥ H(Y |X) (1.7)
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R1 +R2 ≥ H(XY )

and hence this becomes an achievable region for any function f(X, Y ). We shall

call this region the Slepian-Wolf region. Random coding and random binning

ideas were used subsequently for many network information theory problems to

yield the capacity results and still drives most of the achievable regions studied

in the community.

Körner and Marton considered the case when (X, Y ) follows from the DSBS

distribution, and investigated the capacity region when Z = X ⊕ Y , i.e. the

receiver wishes to compute the bit-wise modulo-two sum of the sequences Xn, Y n,

which we will refer to as the Körner and Marton’s modulo two sum problem. And

we will use RKM(pXY ) to denote the optimal rate region for this problem. In

particular they showed that linear codes can be used to achieve the rate region:

R1 ≥ H(Z)

R2 ≥ H(Z) (1.8)

and further that this matches the capacity region when p(x, y) is DSBS distri-

bution. We shall call this region the Körner-Marton region. For any ρ 6= 0 it

is immediate that the above region is strictly larger than the region given by

(1.7). Thus it became apparent that random coding ideas had its limitations and

structured codes were needed for multiuser information theory problems. This

has then led to development of lattice codes, coset codes, and other ideas that

have spurred a sub-field of algebraic network information theory.

In 1982, Ahlswede and Han [2] combined both the coding schemes above and

obtained the following achievable rate region:

Theorem 1.6 (Ahlswede and Han [1]). A rate pair (R1, R2) is achievable if

R1 ≥ I(U ;X|V ) +H(Z|UV )

R2 ≥ I(V ;Y |U) +H(Z|UV )

R1 +R2 ≥ I(UV ;XY ) + 2H(Z|UV )

(1.9)

for some U and V that satisfy the Markov chain U → X → Y → V .

Remark 1.4. The following remarks are worth noting.
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1. Observe that when U = X, V = Y , above rate region reduces to Slepian-

Wolf’s rate region; and when U, V are constant random variables, it’s re-

duced to Körner-Marton’s rate region obtained using linear codes.

2. The multi-letter extensions of the above region tends to the capacity region.

To see this, set U = M1 and V = M2 and apply Fano’s inequality.

3. The above rate region remains achievable (and multi-letter extension tends

to capacity) even if we assume that X, Y take some values in a finite field

and Z is the modulo-sum in the field. See for instance Lemma 5 in [31].

4. It has been conjectured in [52], and verified by numerical simulations by

different groups of researchers, that the smallest sum-rate yielded by the

above region is indeed the minimum of {H(XY ), 2H(Z)}, i.e. the minimum

of the Slepian-Wolf region and the Körner-Marton region.

5. It is also known that for weighted sum-rate the region is strictly larger than

the convex hull of the Slepian-Wolf region and the Körner-Marton region

Denote the interior of the set of rate pairs (R1, R2) satisfying inequalities (1.9)

as AAH(pXY ).

1.2 Evaluation of Achievable Region

1.2.1 Testing Optimality by Weighted Sum Rate

For the channel coding problem mentioned in the last section 1.1, one could also

apply the coding strategies in the achievablity proof directly over the n uses of

the channel, and get an achievable rate region for W⊗n
Y |X , which is called n-letter

achievable rate region, denoted as A (W⊗n
Y |X). On the contrary, A (WY |X) will be

referred to as single-letter achievable rate region.

It’s well-known that testing the optimality of A (W ) is equivalent to comparing

the 2-letter achievable rate region with the Minkowski sum of two single-letter

achievable rate region, see Lemma 1 in [66]:

Lemma 1.1 (Lemma 1 in [66]). An achievable rate region A (W ) is optimal for

some channel coding problem iff

A (W⊗2) = A (W )⊕A (W ) ∀ W (1.10)
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Due to the time sharing technique, the sets on both sides of equation (1.10)

are convex sets. one way to compare them is by comparing their supporting

hyperplanes, i.e., the maximized weighed sum rate for a given vector ~γ ∈ Rd
+:

S~γ∈Rd+(W ) := sup
(R1,··· ,Rd)∈A (W )

d∑
i=1

γiRi

S~γ∈Rd+(W⊗2) := sup
(R1,··· ,Rd)∈A (W⊗2)

d∑
i=1

γiRi

Equality (1.10) is equivalent to

S~γ∈Rd+(W⊗2) = 2S~γ∈Rd+(W ) ∀ W,~γ ∈ Rd
+ (1.11)

For a channel coding problem on W , notice that if (R1, · · · , Rd) ∈ A (W ),

then (2R1, · · · , 2Rd) ∈ A (W⊗2), thus the direction S~γ∈Rd+(W⊗2) ≥ 2S~γ∈Rd+(W )

always hold for any channel W and vector ~γ ∈ Rd
+. Therefore, the optimality of

A (W ) is equivalent to

S~γ∈Rd+(W⊗2) ≤ 2S~γ∈Rd+(W ) ∀ W,~γ ∈ Rd
+ (1.12)

Similar ideas and proofs naturally extends to distributed source coding prob-

lems in section 1.1, except that finding the supporting hyperplanes for the achiev-

able rate region in distributed source coding becomes a minimization problem.

The optimality of certain achievable rate regions for distributed source coding

problem on a DMS following distribution p, is equivalent to

S~γ∈Rd+(p⊗2) ≥ 2S~γ∈Rd+(p) ∀ p,~γ ∈ Rd
+ (1.13)

where

S~γ∈Rd+(p) := inf
(R1,··· ,Rd)∈A (p)

d∑
i=1

γiRi

S~γ∈Rd+(p⊗2) := inf
(R1,··· ,Rd)∈A (p⊗2)

d∑
i=1

γiRi

1.2.2 Reducing to Non-convex Functional Family

Observe that one difference between S~γ∈Rd+(W ) (or S~γ∈Rd+(p)) and the non-convex

functional family (1.1), is that in the non-convex functional family (1.1), there

is no constraint on the distribution pXn ; while for S~γ∈Rd+(W ), the conditional

probability of the output random variables given the inputs is fixed by the channel
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law, and for S~γ∈Rd+(p), the joint distribution of DMS random variables must be

consistent with the given DMS distribution p.

However, by introducing penalty terms, one could show that S~γ∈Rd+(W ) and

S~γ∈Rd+(p) falls into the limiting case of the non-convex functional family (1.1).

Take the point-to-point channel coding for instance, the weighted sum rate sub-

additive inequality (1.12) simplifies to

max
pX1X2

I(X1X2;Y1Y2) ≤ 2 max
pX

I(X;Y ) ∀ WY |X (1.14)

Here the conditional distribution PY |X = WY |X imposes a constraint on the joint

distribution pXY . To show both sides of above equality (1.14) falls into the

limiting case of the non-convex functional family (1.1), we will introduce the

penalty term in terms of divergence:

D(pY |X=x||WY |X=x) :=
∑
y∈Y

pY |X(y|x) log
pY |X(y|x)

WY |X(y|x)
,

D(pY1Y2|X1X2=x1x2||WY |X=x1 ⊗WY |X=x2)

:=
∑

y1y2∈Y2

pY1Y2|X1X2(y1y2|x1x2) log
pY1Y2|X1X2(y1y2|x1x2)

WY |X=x1 ⊗WY |X=x2

.

Let c > 0, observe that the right hand side of equation (1.14) can be rewritten

as

max
pX

I(X;Y ) = max
pXY

lim
c→∞

I(X;Y )− c
∑
x∈X

pX(x)D(pY |X=x||WY |X=x)

(a)
= lim

c→∞
max
pXY

I(X;Y )− c
∑
x∈X

pX(x)D(pY |X=x||WY |X=x)

= lim
c→∞

max
pXY

H(Y ) + (c− 1)H(Y |X) + cE[logWY |X ]

and the left hand side of equation (1.14) can be rewritten as

max
pX1X2

I(X1X2;Y1Y2)

= max
pX1X2Y1Y2

lim
c→∞

I(X1X2;Y1Y2)

− c
∑

(x1,x2)∈X 2

pX1X2(x1x2)D(pY1Y2|X1X2=x1x2||WY |X=x1 ⊗WY |X=x2)

(a)
= lim

c→∞
max

pX1X2Y1Y2

I(X1X2;Y1Y2)

− c
∑

(x1,x2)∈X 2

pX1X2(x1x2)D(pY1Y2|X1X2=x1x2||WY |X=x1 ⊗WY |X=x2)
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= lim
c→∞

max
pXY

H(Y1Y2) + (c− 1)H(Y1Y2|X1X2) + cE[logW⊗2
Y |X ]

The exchange of limit and maximum in step (a) can be justified since the func-

tional is bounded from above and is continuous with respect to pXY . Here

both maxpXY H(Y ) + (c− 1)H(Y |X) + cE[logWY |X ] and maxpXY H(Y1Y2) + (c−

1)H(Y1Y2|X1X2) + cE[logW⊗2
Y |X ] fall into the non-convex functional family (1.1).

Similar arguments extends to evaluation of other S~γ∈Rd+(W ) and S~γ∈Rd+(p) in

the communication settings arising in section 1.1, and we will omit the details

here to avoid the duplication of arguments.

1.2.3 Auxiliary Random Variable and Dual Representation

The auxiliary random variables have appeared in the achievable rate regions for

many communication scenarios, including Broadcast channel, Gray-Wyner source

coding, Lossless distributed coding with one helper, and Lossless distributed cod-

ing with two helpers. And identifying the optimal auxiliary random variable

is critical in the evaluation of the weighted sum rate for these achievable rate

regions.

One idea to interpret the auxiliary random variable is to use the so-called

upper concave envelope or lower convex envelope, see [45]. Let f(pX) be a function

of pX defined on a probability simplex D in R|X |, the upper concave envelope,

denoted by CpX [f ], is defined as

CpX [f ](p̂X) := inf {g(p̂X) : g(pX) is concave in pX ∈ D, g(pX) ≥ f(pX)∀pX ∈ D}

for any p̂x ∈ D. And the lower convex envelope, denoted by KpX [f ], is defined as

KpX [f ](p̂X) := −CpX [−f ](p̂X)

for any p̂X ∈ D. Intuitively speaking, CpX [f ] is taking the convex hull of the set

of points {(pX , y) : y ≤ f(pX), pX ∈ D}, and KpX [f ] is taking the convex hull of

the set of points {(pX , y) : y ≥ f(pX), pX ∈ D}.

The equivalent characterizations of upper concave envelope and lower convex

envelope are given as following, see [45]:

CpX [f ](p̂X) = sup
pU|X

∑
u∈U

pU(u)f(p̂X|U=u), (1.15)

KpX [f ](p̂X) = inf
pU|X

∑
u∈U

pU(u)f(p̂X|U=u) (1.16)



1.2. EVALUATION OF ACHIEVABLE REGION 15

where pU(u) =
∑

x∈X p̂X(x)pU |X(u|x) and p̂X|U=u =
[
p̂X(x)pU|X(u|x)

pU (u)

]
x∈X

.

Observe that the upper concave envelope CpX [f ] is fully determined by the

dual representation of f(pX), which is defined as

f †(~d) = sup
pX

{
f(pX)−

∑
x∈X

dxpX(x)

}
,

for any real-valued vector ~d := (dx, x ∈ X ), see [6]. Similarly, the lower convex

envelope is determined by its dual

f †(~d) = inf
pX

{
f(pX)−

∑
x∈X

dxpX(x)

}
,

for any real-valued vector ~d := (dx, x ∈ X ).

Take the lossless distributed source coding with one helper for instance, the

optimality of A (pXY ) is equivalent to:

Sγ(p
⊗2
XY ) ≥ 2Sγ(pXY ) (1.17)

Here the single-letter and 2-letter form of the weighted sum rate can be rewritten

in terms of the lower convex envelopes:

Sγ(pXY ) := inf
(R1,R2)∈A (pXY )

R1 + γR2

(a)
= min

pU|X
H(Y |U) + γI(U ;X)

(b)
=H(X) + KqX [H(Y )− γH(X)] (pX)

Sγ(p
⊗2
XY ) := inf

(R1,R2)∈A (p⊗XY )
R1 + γR2

(a)
= min

pU|X1X2

H(Y1Y2|U) + γI(U ;X1X2)

(b)
=H(X1X2) + KqX1X2

[H(Y1Y2)− γH(X1X2)] (p⊗2
X )

for some γ ≥ 0.

Here in step (a) the minimum exists since |U| ≤ |X |+1 and thereby pU |X falls

into some compact probability simplex space; step (b) follows from the equivalent

characterization of lower convex envelope (1.16).

Through the techniques used in the proof of Lemma 2 in [6], equation (1.17)

holds if for any real-valued vectors dX , d̂X ,

min
qX1X2

H(Y1Y2)− γH(X1X2)− EqX1
[dX ]− EqX2

[d̂X ]

≥min
qX
{H(Y )− γH(X)− EqX [dX ]}+ min

qX

{
H(Y )− γH(X)− EqX [d̂X ]

} (1.18)
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Though the functionals are not convex in general, one could still show that

product distribution is the global minimizer of the left-hand side of above equation

(1.18) by the following argument:

H(Y1Y2)− γH(X1X2)− EqX1
[dX ]− EqX2

[d̂X ]

(a)

≥H(Y1)− γH(X1)− EqX1
[dX ] +H(Y2|Y1X1)

− γH(X2|X1Y1)− EqX1Y1

[
EqX2|X1Y1

[d̂X ]
]

=H(Y1)− γH(X1)− EqX1
[dX ] +

∑
x1,y1

qX1Y1(x1, y1)[
H(Y2|X1 = x1, Y1 = y1)− γH(X2|X1 = x1, Y1 = y1)− EqX2|X1=x1,Y1=y1

[d̂X ]
]

(b)

≥min
qX
{H(Y )− γH(X)− EqX [dX ]}+ min

qX

{
H(Y )− γH(X)− EqX [d̂X ]

}
Step (a) follows from that conditional reduces entropy, and the markov chain

X2 → X1 → Y1. Step (b) is due to the Markov chain X1, Y1 → X2 → Y2 and

the fact that taking average will not decrease the functional value below the

minimized value. This finishes the optimality proof of A (pXY ).

Similar analysis could be applied to other communication problems in section

(1.1). For Marton’s inner bound, there is a detailed discussion on testing the

optimality via the dual of the weighted sum rate in [6] and [46].

1.3 Contributions of this Thesis

This thesis tries to solve several instances in non-convex functional family (1.1),

and intends to provide insights to the structure of the optimizers. Some of the

results also find applications in other fields including computer science, see [11].

In Chapter 2, we try to evaluate the forward and reverse hypercontractive re-

gion for a pair of random variables (X, Y ), where a uniform X is passed through

a binary erasure channel BEC(ε) to produce Y and 0 < ε < 1. The joint distri-

bution of (X, Y ) is denoted as BIEO(ε). Our technique builds on an equivalent

characterization of hypercontractivity using Kullback-Leibler Divergence.

The divergence characterizations are in general non-convex functional opti-

mization problems and belong to the family (1.1). But certain structure of the

interior stationary points helps us controlling the behavior of the global optimiz-

ers, thus establishing the hypercontractive regime for some non-trivial range of
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parameters.

A similar analysis also recovers the celebrated results for a pair of variables

(X, Y ), where a uniform X is passed through a binary symmetric channel BSC(ρ)

with flipping probability 1−ρ
2

to produce Y and−1 < ρ < 1. The joint distribution

of (X, Y ) is denoted as DSBS(ρ). This result is also known as the Bonami-Beckner

inequality.

Chapter 3 starts from a new non-convex weighted sum rate outer bound for

the Körner and Marton’s modulo two sum problem. By optimizing over this outer

bound, we could show that the optimal sum-rate is given by linear codes for a

larger class of binary distributions, thus extending the optimality results for the

Körner and Marton’s modulo two sum problem.

Chapter 4 is related to the non-convex functional H(Yt) − γH(Xt), where

Xt := X+
√
tZ is in the set of distributions along the heat flow and Yt is obtained

by passing Xt through an additive Gaussian noise channel. We show that if t is

re-scaled so that H(Xt) is linear in t, then H(Yt) is convex in t. This problem

is equivalent to showing the log-convexity of Fisher Information, thus resolving

a conjecture in [15] and implicitly in the 1966 paper [39] by McKean. This is a

joint work with Michel Ledoux.



Chapter 2

Hypercontractivity Region

Evaluation

2.1 Introduction

Forward and reverse hypercontractive inequalities are a family of inequalities that

are studied in functional analysis [13, 41], which have also found applications in

computer science [11,40].

Definition 2.1. A pair of random variables (X, Y ) is said to be (λ1, λ2) forward

hypercontractive, for λ1, λ2 ∈ (1,∞), if

E(f(X)g(Y )) ≤ ‖f(X)‖λ1‖g(Y )‖λ2 (2.1)

holds for all non-negative functions f(·) : X → R+, g(·) : Y → R+.

Definition 2.2. A pair of random variables (X, Y ) is said to be (λ1, λ2) reverse

hypercontractive, for λ1, λ2 ∈ (−∞, 1), if

E(f(X)g(Y )) ≥ ‖f(X)‖λ1‖g(Y )‖λ2 (2.2)

holds for all positive functions f(·) : X → R++, g(·) : Y → R++.

Remark 2.1. The following remarks are worth noting:

• In the above, we adopt the following notation for λ-th norm of random

variables:

‖Z‖λ := E(|Z|λ)
1
λ , λ 6= 0.

and ‖Z‖0 = eE(log |Z|).

18
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• We only consider finite valued random variables in this chapter, though

the standard machine (where finite valued random variables are called sim-

ple functions) enables the extension of the characterizations to families of

general random variables.

From Hölder’s inequality and monotonicity of norm, it is immediate that if

1

λ1

+
1

λ2

≤ 1

then the forward hypercontractive inequality (2.1) holds.

Similarly, reverse Hölder’s inequality says that the reverse hypercontractive

inequality (2.2) holds when
1

λ1

+
1

λ2

= 1,

and the monotonicity of the ‖Z‖λ in λ yields a trivial region of parameters where

(2.2) always holds. This, for instance, includes the region λ1, λ2 ∈ (−∞, 0].

Therefore the non-trivial region of the reverse hypercontractive region is when at

least one of the parameters λ1 or λ2 is strictly positive.

A necessary condition for (X, Y ) to be (λ1, λ2) forward hypercontractive is

given in terms of the maximal correlation of (X, Y ).

Definition 2.3 (maximal correlation coefficient). The maximal correlation coef-

ficient between a pair of random variables (X, Y ), ρm(X, Y ), is defined as

ρm(X, Y ) = sup E[ψ1(X)ψ2(Y )]. (2.3)

where ψ1(X) and ψ2(Y ) are real-valued functions of X and Y such that

E[ψ1(X)] = E[ψ2(Y )] = 0 and E[ψ2
1(X)] ≤ 1, E[ψ2

2(Y )] ≤ 1.

Remark 2.2. Observe that the maximal correlation coefficient can also be written

as

ρm(X, Y ) = − inf E[ψ1(X)ψ2(Y )]. (2.4)

where ψ1(X) and ψ2(Y ) are real-valued functions of X and Y such that

E[ψ1(X)] = E[ψ2(Y )] = 0 and E[ψ2
1(X)] ≤ 1, E[ψ2

2(Y )] ≤ 1.

Theorem 2.1 (Forward hypercontractive correlation lower bound, [5]). A pair

of random variables is (λ1, λ2) forward hypercontractive for λ1, λ2 ∈ (1,∞), only

if

(λ1 − 1)(λ2 − 1) ≥ ρ2
m(X, Y ).
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Remark 2.3. This is a classical result and we present a proof for completeness.

Proof. In forward hypercontractivity definition (2.1), choose f(X) = 1+aεψ1(X)

and g(Y ) = 1 + bεψ2(Y ) where ψ1(X) and ψ2(Y ) are arbitrary real-valued func-

tions such that E[ψ1(X)] = E[ψ2(Y )] = 0 and E[ψ2
1(X)] ≤ 1,E[ψ2

2(Y )] ≤ 1. Here

a, b ≥ 0 are parameters to be optimized and ε > 0 is small enough so that both

f(X) and g(Y ) are nonnegative functions.

Taylor expansion with respect to ε shows that

E[f(X)g(Y )] = 1 + abε2 E[ψ1(X)ψ2(Y )]

‖f(X)‖λ1 = 1 +
λ1 − 1

2
E[ψ2

1(X)]a2ε2 + o(ε3)

‖g(Y )‖λ2 = 1 +
λ2 − 1

2
E[ψ2

2(Y )]b2ε2 + o(ε3)

(2.5)

So we have for any ψ1(X) and ψ2(Y ),

E[f(X)g(Y )] ≤ ‖f(X)‖λ1‖g(Y )‖λ2

⇒abε2 E[ψ1(X)ψ2(Y )] ≤ λ1 − 1

2
E[ψ2

1(X)]a2ε2 +
λ2 − 1

2
E[ψ2

2(Y )]b2ε2 + o(ε3)

⇒abE[ψ1(X)ψ2(Y )] ≤ λ1 − 1

2
a2 E[ψ2

1(X)] +
λ2 − 1

2
b2 E[ψ2

2(Y )]

⇒abE[ψ1(X)ψ2(Y )] ≤ λ1 − 1

2
a2 +

λ2 − 1

2
b2 (2.6)

where the last step follows from λ1 > 1, λ2 > 1 and E[ψ2
1(X)] ≤ 1,E[ψ2

2(Y )] ≤ 1.

By taking supremum over all possible ψ1(X) and ψ2(Y ) for the left-hand

side of (2.6) and using the definition of maximal correlation coefficient (2.3), we

require that

ab|ρm(X, Y )| ≤ λ1 − 1

2
a2 +

λ2 − 1

2
b2

⇒(λ1 − 1)(λ2 − 1) ≥ ρ2
m(X, Y )

where the last step comes from choosing a = |ρm(X,Y )|
λ1−1

, b = 1.

Similarly, a necessary condition for (X, Y ) to be (λ1, λ2) reverse hypercontrac-

tive is presented in the following theorem via the maximal correlation.

Theorem 2.2 (Reverse hypercontractive correlation bound). A pair of random

variables (X, Y ) ∼ pXY is (λ1, λ2) reverse hypercontractive for λ1, λ2 ∈ (−∞, 1),

only if

(λ1 − 1)(λ2 − 1) ≥ ρ2
m(X, Y )
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Remark 2.4. The proof to this theorem is similar to forward hypercontractivity

and we also present a proof for completeness.

Proof. In reverse hypercontractivity definition (2.2), choose f(X) = 1 + aεψ1(X)

and g(Y ) = 1+bεψ2(Y ) where ψ1(X) and ψ2(Y ) satisfies E[ψ1(X)] = E[ψ2(Y )] =

0 and E[ψ2
1(X)] ≤ 1,E[ψ2

2(Y )] ≤ 1.

From equations (2.5), for any ψ1(X) and ψ2(Y ) we have,

E[f(X)g(Y )] ≥ ‖f(X)‖λ1‖g(Y )‖λ2

⇒abε2 E[ψ1(X)ψ2(Y )] ≥ λ1 − 1

2
E[ψ2

1(X)]a2ε2 +
λ2 − 1

2
E[ψ2

2(Y )]b2ε2 + o(ε3)

⇒− abE[ψ1(X)ψ2(Y )] ≤ 1− λ1

2
a2 E[ψ2

1(X)] +
1− λ2

2
b2 E[ψ2

2(Y )]

⇒− abE[ψ1(X)ψ2(Y )] ≤ 1− λ1

2
a2 +

1− λ2

2
b2 (2.7)

where the last step follows from λ1 < 1, λ2 < 1 and E[ψ2
1(X)] ≤ 1,E[ψ2

2(Y )] ≤ 1.

By considering all possible ψ1(X) and ψ2(Y ) and using the alternate definition

of maximal correlation coefficient (2.4) for left-hand side of (2.7), we require that

ab|ρm(X, Y )| ≤ 1− λ1

2
a2 +

1− λ2

2
b2

⇒(1− λ1)(1− λ2) ≥ ρ2
m(X, Y )

where the last step comes from choosing a = |ρm(X,Y )|
1−λ1 , b = 1.

Exact computation of the hypercontractive parameters for certain distribu-

tions has been a challenging task with very few exact characterizations. Two

well-known cases where exact computations have been feasible are for jointly

Gaussian random variables, and when (X, Y ) follows a Doubly Symmetric Binary

Source (DSBS) distribution, see [12, 13, 30]. In these cases, the hypercontractive

parameters matches the correlation lower bound.

Our starting point is the following equivalent characterizations of the forward

and reverse hypercontractive region derived in [43] and [7]. One of the charac-

terization using divergence, stated below, can also be inferred from an earlier

work [14].

Theorem 2.3 ( [43]). Consider a pair of random variables (X, Y ) distributed

according to pXY . For any λ1, λ2 ∈ (1,∞), the following four assertions are

equivalent:
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(i) pXY is (λ1, λ2) forward hypercontractive;

(ii) For every qXY (� pXY ) we have (independently by Carlen et. al. [14])

1

λ1

D(qX‖pX) +
1

λ2

D(qY ‖pY ) ≤ D(qXY ‖pXY ). (2.8)

(iii) For every extension pV |XY such that I(V ;XY ) > 0 we have

1

λ1

I(U ;X) +
1

λ2

I(U ;Y ) ≤ I(U ;XY )

(iv)

KqXY

[
1

λ1

H(X) +
1

λ2

H(Y )−H(XY )

] ∣∣∣∣
pXY

=
1

λ1

H(X) +
1

λ2

H(Y )−H(XY )

(2.9)

In the above, qXY � pXY denotes that qXY is absolutely continuous with

respect to pXY .

Remark 2.5. In [8], Beigi and Gohari observed that the tensorization property

of forward hypercontractivity is equivalent to the optimality of the achievable

rate region AGY (pXY ) for the Gray-Wyner source coding via using the above

characterization (2.9).

More specifically, the weighted sum rate of AGW (pXY ) can be written as

(W.L.O.G. assume the weight coefficient γ0 for R0 equals 1):

S(γ1,γ2)(pXY ) := inf
(R0,R1,R2)∈AGW (pXY )

R0 + γ1R1 + γ2R2

= inf
pV |XY

I(X, Y ;V ) + γ1H(X|V ) + γ2H(Y |V )

=H(X, Y ) + inf
pV |XY

γ1H(X|V ) + γ2H(Y |V )−H(XY |V )

(a)
=H(X, Y ) + KqXY {γ1H(X) + γ2H(Y )−H(XY )} |pXY (2.10)

where step (a) follows from the equivalence between auxiliary random variable V

and lower convex envelope (1.16).

To explicitly evaluate the weighted sum rate, notice that the optimal pV |XY

is nontrivial happens only when γ1 < 1, γ2 < 1, γ1 + γ2 > 1. And determin-

ing the lower convex envelope KqXY {γ1H(X) + γ2H(Y )−H(XY )} is essentially

determining the set of extreme points:

{pXY : KqXY [γ1H(X) + γ2H(Y )−H(XY )] |pXY = γ1H(X) + γ2H(Y )−H(XY )} ,
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which is the same as the set

{pXY : pXY is (
1

γ1

,
1

γ2

) forward hypercontractive},

by above characterization (2.9)

Theorem 2.4 ( [7]). Depending on the regime of parameters of λ1, λ2, the fol-

lowing yields an equivalent characterization of reverse hypercontractive inequality

(2.2) in terms of divergence.

(i) When λ1, λ2 ∈ (0, 1) reverse hypercontractive inequality (2.2) holds iff:

For any qX and qY there exists rXY with rX = qX and rY = qY such that:

1

λ1

D(qX ||pX) +
1

λ2

D(qY ||pY ) ≥ D(rXY ||pXY )

(ii) When 0 < λ1 < 1 and λ2 < 0 reverse hypercontractive inequality (2.2) holds

iff:

For any qX there exists rXY with rX = qX such that:

1

λ1

D(qX ||pX) +
1

λ2

D(rY ||pY ) ≥ D(rXY ||pXY )

(iii) When λ1 < 0 and 0 < λ2 < 1 reverse hypercontractive inequality (2.2) holds

iff:

For any qY there exists rXY with rY = qY such that:

1

λ1

D(rX ||pX) +
1

λ2

D(qY ||pY ) ≥ D(rXY ||pXY )

Before we state our main results, we state a well-known lemma (mentioned

by Mossel to the authors) that already provides some partial results on the first

regime of reverse hypercontractive parameters in above Theorem 2.4 for pairs of

random variables whose support is not the entire product space X × Y .

Lemma 2.1. Consider a pair of random variables (X, Y ) ∼ pXY . Suppose there

exists (x0, y0) ∈ X × Y such that p(x0, y0) = 0, then for no pair (λ1, λ2) ∈

(0, 1)× (0, 1) will (X, Y ) be (λ1, λ2) reverse hypercontractive.

Proof. The simple argument is presented here for completeness. Consider f(X)

and g(Y ) defined by f(x0) = 1, f(x′) = ε∀x′ 6= x0; g(y0) = 1, g(y′) = ε∀y′ 6= y0.

Note that

E(f(X)g(Y )) = p(x0, y0) +O(ε) = O(ε).
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On the other hand ‖f(X)‖λ1 ≥ pX(x0)
1
λ1 , ‖g(Y )‖λ2 ≥ pY (y0)

1
λ2 . Taking ε→ 0, we

see that reverse hypercontractive inequality (2.2) is violated by a suitably small ε.

Note that since x0, y0 belong to the support of X, Y respectively, pX(x0), pY (y0) >

0.

The results of this chapter first appear in [44] and [47]. This is a joint work

with Prof. Chandra Nair.

2.2 Main results

2.2.1 Binary Erasure Channel with Uniform Inputs

Consider a uniform binary random variable X passed through a binary erasure

channel BEC(ε) producing the ternary output Y . Let p
BEC(ε)
XY denote the joint

distribution of X and Y . From the definition 2.3, one could compute the maximal

correlation coefficient for (X, Y ).

Proposition 2.1. Given a pair of random variables (X, Y ) following the p
BEC(ε)
XY

distribution, where 0 ≤ ε ≤ 1. The maximal correlation coefficient ρm(X, Y ) is
√

1− ε.

The correlation lower bound Theorem 2.1 for this setting says that (X, Y ) is

(λ1, λ2) forward hypercontractive for λ1, λ2 ∈ (1,∞) only if

(λ1 − 1)(λ2 − 1) ≥ 1− ε.

The theorem below (first main new result of this chapter) determines the set of

parameters for which correlation bound is tight, i.e. yields the hypercontractive

region.

Theorem 2.5. Let (X, Y ) distributed according to p
BEC(ε)
XY and λ1, λ2 ∈ (1,∞)

satisfy (λ1− 1)(λ2− 1) = 1− ε. Then (X, Y ) is (λ1, λ2) forward hypercontractive,

i.e. the correlation bound is tight, if and only if the following condition is satisfied:

ε− 1

2
≤ 3

2
(λ2 − 1).

Remark 2.6. If ε ≤ 1
2

then the correlation lower bound is tight; else it turns out

to be tight only for a subset of the regime of parameters.
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Proof. The proof is divided into two parts. In the first part, we will establish the

result for λ2 ≥ 2 directly using the definition of hypercontractivity, by mimicking

Janson’s proof [32] for the DSBS case. For λ2 < 2 we will use the equivalent

characterization using divergences to provide a proof.

Case 1: λ2 ≥ 2. Let λ1 = 1 + 1−ε
λ2−1

so that (λ1 − 1)(λ2 − 1) = 1− ε. We wish

to show that for all functions f(·), g(·) the inequality

E(f(X)g(Y )) ≤ ‖f(X)‖λ1‖g(Y )‖λ2

holds. Observe that, by Hölder’s inequality,

E(f(X)g(Y )) = E(E(f(X)|Y )g(Y )) ≤ ‖E(f(X)|Y )‖λ′2‖g(Y )‖λ2 .

Here λ′2 ∈ (1, 2] is the Hölder conjugate of λ2, that is, λ′2 = λ2
λ2−1

. Hence showing

(in fact this is an equivalent condition) the following suffices

‖E(f(X)|Y )‖λ′2 ≤ ‖f(X)‖λ1 .

W.l.o.g. let f(0) = 1− δ, f(1) = 1 + δ. Then the above inequality reduces to[
1− ε

2
(1− δ)λ′2 +

1− ε
2

(1 + δ)λ
′
2 + ε

] 1
λ′2 ≤

[
1

2
(1− δ)λ1 +

1

2
(1 + δ)λ1

] 1
λ1

.

That is, suffices that

1 + (1− ε)
∞∑
k=1

(
λ′2
2k

)
δ2k ≤

(
1 +

∞∑
k=1

(
λ1

2k

)
δ2k

)λ′2
λ1

To get the above reduction we use the multiplicative formula extension of binomial

co-efficients and the infinite power series

(1 + x)α = 1 +
∞∑
k=1

(
α

k

)
xk, |x| < 1.

Substituting for λ1 we see that
λ′2
λ1

= λ2
λ2−ε > 1. Since (1 + x)a ≥ 1 + ax (a >

1, x > 0), it suffices to show that

1 + (1− ε)
∞∑
k=1

(
λ′2
2k

)
δ2k ≤ 1 +

λ′2
λ1

∞∑
k=1

(
λ1

2k

)
δ2k

Since 1 < λ1 ≤ λ′2 ≤ 2 the inequality is easily seen to be true by comparing the

coefficients of δ2k term by term (all terms are non-negative). Equality holds for

k = 1 and for all other powers it is an inequality, in general. (See Remark 2.7 at

the end of next section.)
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Case 2: λ2 < 2. We use the equivalent characterization using divergences in

this case. Again let (λ1 − 1)(λ2 − 1) = 1− ε. We wish to show that

max
qXY�p

BEC(ε)
XY

1

λ1

D(qX‖pBEC(ε)
X ) +

1

λ2

D(qY ‖pBEC(ε)
Y )

−D(qXY ‖pBEC(ε)
XY ) =

 0 ε− 1
2
≤ 3

2
(λ2 − 1)

> 0 o.w.

It is easy to see that the maximum has to be an interior point by considering

the functional behavior at the boundaries. This is primarily because the last

term has an infinite slope at the boundaries and since λ1, λ2 > 1 this infinite

slope cannot be completely canceled by the first two terms. We omit the details

of this calculation here.

Thus the main part of the proof is to show that there is only one interior

stationary point qXY = p
BEC(ε)
XY when ε − 1

2
≤ 3

2
(λ2 − 1); and otherwise qXY =

p
BEC(ε)
XY is not even a local maximum.

For any (strictly) interior stationary points, the Lagrange conditions yield

k =
1

λ1

ln(q00 + q0E)− 1

λ′2
ln

q00

1− ε
(2.11a)

k =
1

λ1

ln(q11 + q1E)− 1

λ′2
ln

q11

1− ε
(2.11b)

k =
1

λ1

ln(q00 + q0E) +
1

λ2

ln(q0E + q1E)− 1

λ2

ln 2− ln q0E +
1

λ′2
ln ε (2.11c)

k =
1

λ1

ln(q11 + q1E) +
1

λ2

ln(q0E + q1E)− 1

λ2

ln 2− ln q1E +
1

λ′2
ln ε (2.11d)

Equating (2.11c) and (2.11d) yields

q0E

q1E

=

(
q00 + q0E

q11 + q1E

) 1
λ1

. (2.12a)

Equating (2.11a) and (2.11c) yields

q00 =
q
λ′2
0E2λ

′
2−1

(q0E + q1E)λ
′
2−1

1− ε
ε

. (2.12b)

Equating (2.11b) and (2.11d) yields

q11 =
q
λ′2
1E2λ

′
2−1

(q0E + q1E)λ
′
2−1

1− ε
ε

. (2.12c)

Substituting for q00 and q11 using (2.12b) and (2.12c) in (2.12a), setting 1− δ =

2q0E
q0E+q1E

∈ [0, 2], this yields

(1− ε)(1− δ)λ′2−λ1 + ε(1− δ)1−λ1 = (1− ε)(1 + δ)λ
′
2−λ1 + ε(1 + δ)1−λ1
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and using (λ1 − 1)(λ2 − 1) = 1− ε we obtain

(1− ε)(1− δ)
ε

λ2−1 + ε(1− δ)
ε−1
λ2−1 = (1− ε)(1 + δ)

ε
λ2−1 + ε(1 + δ)

ε−1
λ2−1 .

From Lemma 2.2 we know that the above equation has exactly one solution,

δ = 0, when (ε − 1
2
) ≤ 3

2
(λ2 − 1). Thus under the above condition on (λ2, ε)

every interior stationary point must satisfy q0E = q1E. Further from (2.12b) and

(2.12c) we can conclude that

q00

1− ε
=

q11

1− ε
=
q0E

ε
=
q1E

ε
,

implying that the only stationary point (hence global maximizer) is qXY =

p
BEC(ε)
XY , which yields a maximum value 0 as desired.

for some δ > 0 choose

qXY = [q00, q0E, q1E, q11]

=

[
(1− δ)λ′2(1− ε)

A
,
ε(1− δ)

A
,
ε(1 + δ)

A
,
(1− ε)(1 + δ)λ

′
2

A

]
where A = 2ε+ (1− ε)[(1 + δ)λ

′
2 + (1− δ)λ′2 ] is the normalizing constant. Taylor

series expansion of the term

1

λ1

D(qX‖pBEC(ε)
X ) +

1

λ2

D(qY ‖pBEC(ε)
Y )−D(qXY ‖pBEC(ε)

XY )

around ε = 0 yields an expansion

1

24
ε(1− ε)(λ′2 − 1)2((2ε− 1)(λ′2 − 1)− 3)δ4 +O(δ6)

which is positive when

ε− 1

2
>

3

2
(λ2 − 1),

yielding that the maximum of the function is strictly positive under these param-

eter settings.

Now let us turn to the reverse hypercontractive region for binary erasure

channel with uniform inputs. The correlation lower bound for this setting says

that (X, Y ) is (λ1, λ2) reverse hypercontractive for λ1, λ2 ∈ (−∞, 1) only if

(λ1 − 1)(λ2 − 1) ≥ 1− ε.

In all the results mentioned above, the forward hypercontractive or reverse

hypercontractive region matches the correlation lower bound (though in general
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it is known that these two are not the same regions). The computation of reverse

hypercontractive region in this setting shows a non-trivial exact characterization

where the region is not given by the correlation bound.

The following main new result concerns characterizing the reverse hypercon-

tractive region for the binary erasure channel for certain range of parameters.

(This determines the second regime in Theorem 2.4, and leaves the third one

as undetermined in Theorem 2.4, since Lemma 2.1 rules out the first regime for

p
BEC(ε)
XY )

Theorem 2.6. Let (X, Y ) be distributed according to p
BEC(ε)
XY , ε ∈ (0, 1) and

λ1, λ2 ∈ (−∞, 1) \ {0}. When λ2 < 0, (X, Y ) is (λ1, λ2) reverse-hypercontractive

if and only if

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.

Proof. λ2 < 0 and λ1 ≤ λ′2(:= λ2
λ2−1

) will belong to the reverse hypercontractive

region trivially from the Reverse Hölder’s inequality and the monotonicity of

‖Z‖λ in λ.

From Theorem 2.4 we are left with determining the range of λ1 ∈ (λ′2, 1)

satisfying the following: for any qX there exists rXY with rX = qX such that

1

λ1

D(qX ||pBEC(ε)
X ) +

1

λ2

D(rY ||pBEC(ε)
Y ) ≥ D(rXY ||pBEC(ε)

XY ). (2.13)

We will show that the above condition holds if and only if

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
. (2.14)

(2.14) =⇒ (2.13): If rXY is not absolutely continuous with respect to p
BEC(ε)
XY ,

D(rXY ||pBEC(ε)
XY ) will become +∞, while 1

λ1
D(qX ||pBEC(ε)

X )+ 1
λ2
D(rY ||pBEC(ε)

Y ) are

finite; violating (2.13). Thus, it is sufficient to search over rXY that are absolute

continuous with respect to p
BEC(ε)
XY .

Denote qX(X = 0) = x, rXY (X = 0, Y = 0) = r, rXY (X = 1, Y = 1) = s.

Hence rXY (X = 0, Y = E) = x − r, rXY (X = 1, Y = E) = 1 − x − s, since

rX(X = 0) = qX(X = 0) = x.

Define f(x, r, s) according to

f(x, r, s) :=
1

λ1

D(qX ||pBEC(ε)
X ) +

1

λ2

D(rY ||pBEC(ε)
Y )−D(rXY ||pBEC(ε)

XY )
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We need to show that when λ2 < 0 and λ1 satisfies (2.14) then

min
x∈[0,1]

max
0≤r≤x,

0≤s≤1−x

f(x, r, s) ≥ 0.

Define the function

g(x) := max
0≤r≤x,0≤s≤1−x

f(x, r, s).

Then suffices that g(x) ≥ 0 for x ∈ [0, 1]. A simple symmetry argument shows

that g(x) is symmetric about x = 1
2
.

The idea of the proof is as follows: we will show that g(x) has 3 stationary

points in the interval x ∈ (0, 1), with one of them being at x = 1
2
. When

(λ1 − 1)(λ2 − 1) ≥ 1 − ε, we will show that g(x) is a local minimum at x = 1
2
,

implying that the other two symmetric stationary points correspond to local

maxima. Since g(1
2
) = 0, it suffices to verify that the boundary condition, i.e.

g(0) ≥ 0. It will turn out that this boundary point is what yields (2.14), the

critical condition in this case.

For a fixed x ∈ (0, 1), since λ2 < 0, convexity of D(p||q) in p immediately

implies that f(x, r, s) is concave in r, s (when viewed as a bivariate function).

Further the derivatives at the boundary tend to infinite, implying that the max-

imum of f(x, r, s) (for a fixed x) is attained strictly in the interior. Thus, from

concavity, there is a unique pair of points r0(x) ∈ (0, x) and s0(x) ∈ (0, 1 − x)

such that

g(x) = f(x, r0(x), s0(x)).

We will first analyze the interior stationary points of g(x). If x∗ is a station-

ary point, then one can check that f(x∗, r0(x∗), s0(x∗)) is a stationary point of

f(x, r, s). This is just a consequence of f(x, r, s) being sufficiently smooth and

the details are omitted here.

Setting gradients to be zero, we have

1

λ1

ln
x

1− x
− ln

x− r
1− x− s

= 0,

1

λ2

ln
2εr

(1− ε)(1− r − s)
− ln

εr

(1− ε)(x− r)
= 0,

1

λ2

ln
2εs

(1− ε)(1− r − s)
− ln

εs

(1− ε)(1− x− s)
= 0.

These equations are essentially the same as those Lagrange conditions in for-

ward hypercontractivity Equation (2.11), if we use the parametrization q00 =
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r, q0E = x − r, q1E = 1 − x − s, q11 = s in Equation (2.11). So via the same

manipulations there (not repeated here), letting 1− δ = 2(x−r)
1−r−s , we have

1− ε
ε

(1− δ)λ′2−λ1 + (1− δ)1−λ1 =
1− ε
ε

(1 + δ)λ
′
2−λ1 + (1 + δ)1−λ1 (2.15)

where λ′2 is Hölder conjugate of λ2. Further every solution of the gradients con-

dition is in one-to-one correspondence to a root of (2.15).

According to Lemma 2.3, under the condition λ1 ≤ ln 2

ln 2−λ2−1
λ2

ln[(1−ε)2
1

λ2−1 +ε]
,

equation (2.15) has only three roots δ = −γ, γ, 0 for some γ ∈ (0, 1).

Correspondingly, the number of interior stationary points f(x, r, s) is three

given by: x∗1 = 1
2
; and two symmetric points x∗2 = (1+γ)ε+(1+γ)λ

′
2 (1−ε)

2ε+(1−ε)[(1+γ)λ
′
2+(1−γ)λ

′
2 ]
> 1

2
,

and x∗3 = 1− x∗2 = (1−γ)ε+(1−γ)λ
′
2 (1−ε)

2ε+(1−ε)[(1+γ)λ
′
2+(1−γ)λ

′
2 ]
< 1

2
.

Part (i) of Lemma 2.3 establishes that the condition (2.14) and ε ∈ (0, 1)

implies (λ1 − 1)(λ2 − 1) > 1 − ε; and under this case we will show that x∗ = 1
2

is a local minimizer of g(x). Then x∗2 and x∗3 cannot be a local minimizer of g(x)

as g(x) is continuously differentiable on (0, 1). Thus, x∗2 and x∗3 cannot be global

minimizers of g(x).

To show x∗ = 1
2

is a local minimizer of g(x), notice that g(1
2
) = f(1

2
, 1−ε

2
, 1−ε

2
) =

0. So suffices to show that for δ > 0 arbitrarily small, g(1
2

+ δ) > 0.

One can verify that

f(
1

2
+ δ, r0(

1

2
+ δ), s0(

1

2
+ δ)) = 2(

1

λ1

− 1− λ2

ε− λ2

)δ2 +O(δ3).

which is strictly positive for small δ precisely when

(λ1 − 1)(λ2 − 1) > 1− ε.

Thus the global minimizer of g(x) can only be one of the three points {0, 1
2
, 1}.

By symmetry g(0) = g(1). Now g(0) = maxs∈[0,1] f(0, 0, s), where

f(0, 0, s) =
1

λ1

ln 2 +
1

λ2

[
s ln

2s

1− ε
+ (1− s) ln

1− s
ε

]
− s ln

2s

1− ε
− (1− s) ln

2(1− s)
ε

Notice the above function is concave over s. By taking derivative over s, we

get that the maximum point s0(0) = 1−ε

1−ε+2
1

1−λ2 ε
.

Thus f(0, 0, s0(0)) ≥ 0 is equivalent (after re-arranging) to

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.
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This range, from first part of Lemma 2.3, also satisfies (λ1 − 1)(λ2 − 1) > 1− ε,

implying that when (2.14) holds, g(x) ≥ 0 for all x ∈ [0, 1] and hence (2.13) holds.

(2.13) ⇒ (2.14): Let qX(X = 0) = 0. If rXY is not absolutely continuous

with respect to p
BEC(ε)
XY , D(rXY ||pBECXY ) will become +∞, while 1

λ1
D(qX ||pBECX ),

1
λ2
D(rY ||pBECY ) are finite, which contradicts the condition. Suffices to consider

the case when rXY is absolutely continuous with respect to p
BEC(ε)
XY .

As before denote rXY (X = 1, Y = 1) = s, (0 ≤ s ≤ 1). The condition

1
λ1
D(qX ||pBEC(ε)

X ) + 1
λ2
D(rY ||pBEC(ε)

Y ) ≥ D(rXY ||pBEC(ε)
XY ) for some rXY with rX =

qX leads to f(0, 0, s) ≥ 0 for some s ∈ [0, 1]. But as mentioned in the previous

section, this is equivalent to f(0, 0, s0(0)) ≥ 0, which leads to

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.

2.2.2 Binary Symmetric Channel with Uniform Inputs

Consider a uniformly distributed binary valued X and Y obtained by passing X

through a BSC with crossover probability 1−ρ
2

. Denote the joint distribution as

p
BSC(ρ)
XY . The hypercontractivity for this pair of (X, Y ) has been established since

the 70s and there are various proofs in the literature, see [12,13,30]. The simplest

one, according to the authors, is the one due to Janson [32]. This section yields

yet another proof of the celebrated Bonami-Beckner inequality starting from the

divergence characterization. Friedgut [23] established a proof along the very same

lines for a particular choice λ1 = λ2 = 1+ |ρ|, and this proof generalizes the proof

to all parameters.

Similarly, one could compute the maximal correlation coefficient for (X, Y ) ∼

p
BSC(ρ)
XY from the definition (2.3).

Proposition 2.2. Given a pair of random variables (X, Y ) following the DSBS(ρ)

distribution, where −1 ≤ ρ ≤ 1. The maximal correlation coefficient ρm(X, Y ) is

ρ.

For p
BSC(ρ)
XY , both the forward and reverse hypercontractive regimes are char-

acterized by the correlation lower bound.

Theorem 2.7 (Bonami-Beckner; alternate proof provided here). For (X, Y ) dis-

tributed according p
BSC(ρ)
XY , the pair (X, Y ) is (λ1, λ2) forward hypercontractive
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if

(λ1 − 1)(λ2 − 1) ≥ ρ2.

Proof. When ρ = 0 the result is trivial and follows from the monotonicity of

norm. Hence, we assume that ρ 6= 0. The proof mimics that of case 2 of the BEC

proof. We consider, w.l.o.g. the pair (λ1, λ2) satisfying (λ1− 1)(λ2− 1) = ρ2. We

are required to show that

max
qXY�pBSCXY

1

λ1

D(qX‖pBSCX ) +
1

λ2

D(qY ‖pBSCY )−D(qXY ‖pBSCXY ) = 0.

It is rather elementary to see that the boundary points cannot be the maximizers;

so we will only consider the interior points. The idea is to show that there is only

one interior stationary point at qXY = pBSCXY .

For any (strictly) interior stationary points, the Lagrange conditions yield

k =
1

λ1
ln(q00 + q01) +

1

λ2
ln(q00 + q10)− ln

q00
1 + ρ

(2.16a)

k =
1

λ1
ln(q00 + q01) +

1

λ2
ln(q01 + q11)− ln

q01
1− ρ

(2.16b)

k =
1

λ1
ln(q10 + q11) +

1

λ2
ln(q00 + q10)− ln

q10
1− ρ

(2.16c)

k =
1

λ1
ln(q10 + q11) +

1

λ2
ln(q01 + q11)− ln

q11
1 + ρ

(2.16d)

By considering equations (2.16a) and (2.16c); and (2.16b) and (2.16d) we obtain(
q00 + q01

q10 + q11

) 1
λ1

=
q00

q10

1− ρ
1 + ρ

=
q01

q11

1 + ρ

1− ρ
= x (2.17)

Similarly considering equations (2.16a) and (2.16b); and (2.16c) and (2.16d) we

obtain (
q00 + q10

q01 + q11

) 1
λ2

=
q00

q01

1− ρ
1 + ρ

=
q10

q11

1 + ρ

1− ρ
(2.18)

Since q00 + q01 + q10 + q11 = 1, denoting θ = 1−ρ
1+ρ
∈ (0, 1) ∪ (1,∞) (since ρ 6= 0),

elementary manipulations show that x satisfies the following equation

xλ1−1 =
(1 + θx)

1
λ2−1 θ + (θ + x)

1
λ2−1

(θ + x)
1

λ2−1 θ + (1 + θx)
1

λ2−1

.

Since (λ1 − 1)(λ2 − 1) = ρ2 =
(

1−θ
1+θ

)2
, denoting by t = 1

λ2−1
, we obtain that x

satisfies

xt(
1−θ
1+θ )

2

=
(1 + θx)tθ + (θ + x)t

(θ + x)tθ + (1 + θx)t
.
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From Lemma 2.4, we could know that the equation above has only one root x = 1.

Therefore there is exactly one stationary point, qXY = pBSCXY . This ensures that

the maximum of the divergence expression is zero and completes the proof.

The same technique that we employed here can be used for the evaluation

of reverse hypercontractive region for binary symmetric channel with uniform

inputs. In this case, a result due to Borrell [13] already shows that the correlation

bound is tight and the technqiue developed here just provides another proof. Since

the argument is similar to previous case, we will only provide an outline of this

argument. As you will see, this case is considerably simpler than that of the

erasure channel.

The information-measure characterization in Theorem 2.4 essentially reduces

to checking that a certain min-max expression is non-negative. By analyzing

each case (in Theorem 2.4) separately we can show, in a similar fashion, that any

interior local minimum must be a stationary point.

Further by analyzing the first derivative conditions, we will arrive that all

stationary points are in one-to-one correspondence with the set of y satisfying

x−t(
1−θ
1+θ

)2 =
(1 + θx)tθ + (θ + x)t

(θ + x)tθ + (1 + θx)t
, (2.19)

for some appropriately defined t ∈ (−∞, 0) and θ ∈ (0,∞). This is identical to the

Equation (2.16) in Lemma 2.4 in the forward analysis for p
BSC(ρ)
XY and the details

are omitted. As shown again in the forward case, the above equation has a unique

root y = 1 in (0,∞); when θ ∈ (0,∞) \ {1}. This shows that the unique interior

stationary point is rXY = pBSCXY . Contrary to the binary erasure channel, it turns

out that the boundary points do not influence the reverse-hypercontractive region.

2.2.3 Binary Input Symmetric Output Channel with Uniform Inputs

Consider a pair of random variables (X, Y ) where X is binary and uniformly

distributed, and Y is obtained via a channel WY |X that satisfies a symmetry

property, WY |X(Y = i|X = 1) = WY |X(Y = −i|X = −1) = pi, for −K ≤ i ≤

K,K ∈ N+. Denote the joint distribution as p
BISO(~p)
XY distribution. This class

contains both the p
BEC(ε)
XY and p

BSC(ρ)
XY .

Proposition 2.3. Given a pair of random variables (X, Y ) following the BISO(~p)

distribution. The maximal correlation coefficient ρm(X, Y ) is
∑K

i=1
(pi−p−i)2
pi+p−i

.
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The correlation inner bound (a simple calculation) for this setting says that

(X, Y ) is (λ1, λ2) forward hypercontractive only if

(λ1 − 1)(λ2 − 1) ≥
K∑
i=1

(pi − p−i)2

pi + p−i
. (2.20)

The following proposition states that the correlation lower bound is tight for

forward hypercontractive regime of p
BISO(~p)
XY when λ2 ≥ 2.

Proposition 2.4. For any λ2 ≥ 2, the pair (X, Y ) ∼ p
BISO(~p)
XY is (λ1, λ2) forward

hypercontractive for any pair of λ1, λ2 satisfying the correlation bound (2.20).

Proof. The proof mimics the proof of Case 1 in the proof of Theorem 2.5. Fol-

lowing the approach we need to show that

‖E(f(X)|Y )‖λ′2 ≤ ‖f(X)‖λ1 .

Further, by monotonicity of norm, it suffices to restrict to

(λ1 − 1)(λ2 − 1) =
K∑
i=1

(pi − p−i)2

pi + p−i
.

W.l.o.g. let f(−1) = 1 − δ, f(1) = 1 + δ. Then the above inequality reduces to

showing

K∑
i=−K

pi + p−i
2

(
1− δpi − p−i

pi + p−i

)λ′2
≤
[

1

2
(1− δ)λ1 +

1

2
(1 + δ)λ1

]λ′2
λ1

.

Observing that
λ′2
λ1
≥ 1, taking the binomial expansion of both sides (as earlier)

and using (1 + x)a ≥ 1 + ax, a > 1, x ≥ 0, it suffices to show

1 +
∞∑
k=1

(
λ′2
2k

)
δ2k

(
K∑

i=−K

pi + p−i
2

(
pi − p−i
pi + p−i

)2k
)
≤ 1 +

λ′2
λ1

∞∑
k=1

(
λ1

2k

)
δ2k.

Comparing term by term, we see that equality holds when k = 1 and the inequal-

ity holds for other terms since k ≥ 2 implies

K∑
i=−K

pi + p−i
2

(
pi − p−i
pi + p−i

)2k

≤
K∑

i=−K

pi + p−i
2

(
pi − p−i
pi + p−i

)2

.

This completes the proof of the proposition.

Remark 2.7. A key observation in the above argument is that when 1 < λ1 ≤ λ′2 ≤

2, the terms
(
λ1
2k

)
and

(
λ′2
2k

)
are non-negative for any k ≥ 1; ρm(X, Y )2

(
λ′2
2

)
=

λ′2
λ1

(
λ1
2

)
(where ρm(X, Y )2 is the maximal correlation coefficient); and for j ≥ 2 the term

j−λ′2 ≥ j−λ1 allows one to conclude the term by term relation. This is essentially

a borrow of the argument in [32] for the DSBS scenario. .
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2.3 Conclusion and Discussion

In this chapter, we derive part of the forward and reverse hypercontractivity

region for a pair of variables distributed as the BEC with uniform inputs. The

technique employed is essentially a local analysis (identifying local extremal points

and comparing the function values between them). The key insight that enables

us to do this effectively is that all interior stationary points are in one-to-one

correspondence with the roots of certain equation. The Taylor series expansion

of this equation has certain patterns on the signs of its coefficients, allowing us

to get a control on the number of interior stationary points. We were led to

investigating the uniqueness of stationary point after hearing Friedgut present

his proof for a particular parameter of the BSC case.

The determination of hypercontractivity parameter for the binary erasure

channel was a question posed to us by Jaikumar Radhakrishnan and Venkat

Guruswami during the Simon’s institute semester long program in information

theory. For the binary erasure channel, one can extend the proof technique bor-

rowed from [32] to the forward hypercontractivity parameter regime λ2 ≥ 3
2
.

However for the rest of the regimes, the only proof we could obtain was using the

divergence characterization.

The hypercontractivity parameters for binary symmetric channel with uniform

inputs is derived in many regimes. We also obtain a proof of the Bonami-Beckner

inequality (the BSC case). An interesting observation is that when correlation

inner bound was tight, it turned out that the non-convex optimization problem

had only one stationary point.

For the case of binary input symmetric output channels we showed that the

correlation inner bound is tight for λ2 ≥ 2. However numerical simulations indi-

cate that perhaps the correlation inner bound is tight until λ2 ≥ 4
3
; indicating yet

another example of binary erasure channel being the opposite extremal (the other

one is BSC) case among the space of binary input symmetric output channels.

As shown in [8] forward hypercontractive region is same as the Gray-Wyner

source coding region. In recent past a variety of computations of capacity regions

(or achievable regions) have been performed in network information theory. All of

them involve optimizing non-convex functions (1.1) over probability spaces. The

functions are linear combinations of information measures and usually satisfy the



36 CHAPTER 2. HYPERCONTRACTIVITY REGION EVALUATION

sub-additivity or super-additivity property. The exact computations have been

done in some special cases, where the global maximizer could be identified by a

local analysis.

In many cases, for instance [25], there is only a single interior local optimizer;

and sometimes it is a competition between the boundary and the interior sta-

tionary point, [17]. However, in each case, the proofs are quite complicated and

require careful analysis with very few re-use of specific results. There are some

other similar problems (conjectures), for example the one in [52], where numeri-

cally, there do not exist any other local optimizer other than the conjectured ones.

However, a rigorous mathematical proof is lacking for many of these settings.

All the problems being considered can be reduced to the non-convex problem

family (1.1) by the technique in section 1.2.2, where a certain set of standard tools

could be devised to isolate the global maximizers. This could have far-reaching

consequences: for instance a fast approximation algorithm for obtaining the 2 to

4 norm for an arbitrary matrix with non-negative entries.

2.A Binary Erasure Channel with Uniform Inputs

Lemma 2.2. For δ ∈ [−1, 1], λ2 ∈ (1, 2), ε ∈ (0, 1) the following equation

(1− ε)(1− δ)
ε

λ2−1 + ε(1− δ)
ε−1
λ2−1 = (1− ε)(1 + δ)

ε
λ2−1 + ε(1 + δ)

ε−1
λ2−1 .

has only one root at δ = 0 if (ε− 1
2
) ≤ 3

2
(λ2 − 1).

Proof. Clearly δ = 0 is a root of this equation. Denote p−1 = 1
λ2−1

for convenience

of writing. Note that p ∈ (2,∞). Define the function g(δ)

g(δ) =
1− ε
ε

(1− δ)(p−1)ε + (1− δ)(p−1)(ε−1) − 1− ε
ε

(1 + δ)(p−1)ε − (1 + δ)(p−1)(ε−1)

g(0) = 0, limδ→1− g(δ) = +∞. Further g(δ) = −g(−δ). The statement follows

by showing g(δ) increases over (0, 1) if (p− 1)(ε− 1
2
) ≤ 3

2
.

Take the derivative with respect to δ,

g′(δ) =− (1− ε)(p− 1)[(1− δ)pε−ε−1 − (1− δ)pε−p−ε + (1 + δ)pε−ε−1 − (1 + δ)pε−p−ε]

Let r = pε− ε− p+1
2

, then g′(δ) ≥ 0 is equivalent to

(1− δ)r[(1− δ)−
p−1
2 − (1− δ)

p−1
2 ] ≥ (1 + δ)r[(1 + δ)

p−1
2 − (1 + δ)−

p−1
2 ]).



2.A. BINARY ERASURE CHANNEL WITH UNIFORM INPUTS 37

Observe that r ≤ 1
2

is equivalent to (ε− 1
2
) ≤ 3

2
(λ2−1). So we are done if we show

that the above inequality holds for any r ≤ 1
2

and p > 2. Further since
(

1−δ
1+δ

)r
decreases in r, it suffices to show the inequality for r = 1

2
and p > 2. Substituting

r = 1
2

and rearranging, we wish to show

(1− δ)−
p
2

+1 + (1 + δ)−
p
2

+1 ≥ (1 + δ)
p
2 + (1− δ)

p
2 .

Performing a Taylor series expansion, it suffices to show

2

[
1 +

∞∑
k=1

(
1− p

2

2k

)
δ2k

]
≥ 2

[
1 +

∞∑
k=1

( p
2

2k

)
δ2k

]
Note that the first term (k = 1) is equal for both sides and is positive (in the case

that p > 2). For k ≥ 2 it is immediate (by expanding the binomial term) that(
1− p

2

2k

)
≥ max

{
0,

( p
2

2k

)}
.

This completes the proof of the lemma.

Lemma 2.3. Let λ′2 < λ1 < 1, λ2 < 0, where λ′2 := λ2
λ2−1

. When λ1 ≤
ln 2

ln 2−λ2−1
λ2

ln[(1−ε)2
1

λ2−1 +ε]
, the following hold:

(i) (λ1 − 1)(λ2 − 1) ≥ 1− ε. Further the inequality is strict if ε ∈ (0, 1).

(ii) The equation

1− ε
ε

(1− δ)λ′2−λ1 + (1− δ)1−λ1 =
1− ε
ε

(1 + δ)λ
′
2−λ1 + (1 + δ)1−λ1

has three roots δ = −γ, 0, γ for some γ ∈ (0, 1) on the interval δ ∈ (−1, 1).

Proof. Note that

(λ1 − 1)(λ2 − 1) ≥
(λ2−1)2

λ2
ln[(1− ε)2

1
λ2−1 + ε]

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.

Therefore it suffices to show that above right-hand side is larger than 1− ε when

λ2 < 0. Setting r = 1
1−λ2 ∈ (0, 1) and substituting into above right-hand side, it

suffices to show that

1
r(r−1)

ln[(1− ε)2−r + ε]

ln 2 + 1
r−1

ln[(1− ε)2−r + ε]
≥ 1− ε.

This can be rearranged as

(1− ε) + ε2r ≤ 2
εr

1−r+εr .
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It is a rather immediate exercise to verify that the right-hand-side is strictly

concave in ε, for ε ∈ (0, 1); and since equality holds at ε = 0 and ε = 1, we have

the desired result. This establishes part (i) of the lemma.

Proof of (ii): Define the function h(x) for 0 < x < 2

h(x) =
1− ε
ε

xλ
′
2−λ1 + x1−λ1 − 1− ε

ε
(2− x)λ

′
2−λ1 − (2− x)1−λ1 .

Note that h(1) = 0, limx↓0 h(x) = +∞. Further h(x) = −h(2 − x). Part (ii)

follows by showing that there is only one root for h(x) = 0 for x ∈ (0, 1).

Take the derivative with respect to x,

h
′
(x) =

(1− ε)(λ′2 − λ1)
ε

xλ
′
2−λ1−1 + (1− λ1)x−λ1

+
(1− ε)(λ′2 − λ1)

ε
(2− x)λ

′
2−λ1−1 + (1− λ1)(2− x)−λ1 .

Note that

(1− ε)λ′2 + ε− λ1 > 0 ⇐⇒ (λ1 − 1)(λ2 − 1) > 1− ε.

Thus h′(1) = 2
(

(1−ε)λ′2+ε−λ1
ε

)
> 0 from part (i). Hence h(x) = 0 will have at

least one root in (0, 1) by its continuity.

The claim that h(x) = 0 has only one root in (0, 1) will follow by showing that

h(x) first decreases and then increases on (0, 1); in other words h′(x) has only

one root in (0, 1). Since limx↓0 h
′(x) = −∞, h′(1) > 0, and h′(x) is continuous on

(0, 1], implies that there is at least one root at x = 1− y0 for y0 ∈ (0, 1) for h′(x).

Setting x = 1 − y and considering the Taylor Series expansion of h′(x) with

respect to y about y = 0, we obtain

h′(1− y) = 2
∞∑
k=0

[
(1− ε)(λ′2 − λ1)

ε

(
λ′2 − λ1 − 1

2k

)
+ (1− λ1)

(
−λ1

2k

)]
y2k.

Let ak = (1 − λ1)
(−λ1

2k

)
and bk =

(1−ε)(λ1−λ′2)

ε

(
λ′2−λ1−1

2k

)
. Note that ak, bk ≥ 0

and

h′(1− y) = 2
∑
k≥0

(ak − bk)y2k.

Note that a0 ≥ b0 (from part (i) or since this is h′(1)).

Suppose there exists k0 ∈ N such that ak0 ≤ bk0 , then ak ≤ bk,∀k ≥ k0. This

follows basically from an induction argument, since

ak+1 = ak
(λ1 + 2k)(λ1 + 2k + 1)

(2k + 1)(2k + 2)
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bk+1 = bk
(λ1 + 1− λ′2 + 2k)(λ1 + 1− λ′2 + 2k + 1)

(2k + 1)(2k + 2)
.

1 − λ′2 > 0 implies that once bk ≥ ak, the inequality continues to hold for larger

k. Since h′(1 − y) = 0 has a root in (0, 1), implies that ∃ m ≥ 0 such that

ak ≥ bk, ∀k ≤ m and bk ≥ ak,∀k > m.

Define ck = |ak − bk|. Then

h′(1− y) =
m∑
k=0

cky
2k −

∞∑
k≥m+1

cky
2k

where ck ≥ 0 (with at least one ck in each range, k ∈ [1 : m] and k ≥ m+ 1 being

strictly positive). Let y0 ∈ (0, 1) be a root of h′(1− y) = 0.

For y > y0 > 0, note that

m∑
k=0

cky
2k <

(
y

y0

)2m m∑
k=0

cky
2k
0

=

(
y

y0

)2m ∞∑
k=m+1

cky
2k
0

<
∞∑

k=m+1

cky
2k.

The equality above is a consequence of y0 being a root. Thus, no y > y0 can be

a root of h′(1− y) = 0. Similarly, reversing inequalities above, for 0 < y < y0, y

cannot be a root for h′(1− y) = 0.

Thus h′(x) = 0 has only one root in the interval x ∈ (0, 1), and as

limx↓0 h
′(x) = −∞, h′(1) > 0, due to the continuity of h′(x), we have h′(x) < 0

for x ∈ (0, 1 − y0) and h′(x) > 0 for x ∈ (1 − y0, 1). Putting this together with

limx↓0 h(x) = +∞ and h(1) = 0 implies that, h(x) = 0 has precisely one root,

say x = 1 − γ, in the interval x ∈ (0, 1). Since h(1 − δ) is an odd function with

respect to δ; the roots are given by δ = −γ, 0, γ. This completes the proof of part

(ii).

2.B Binary Symmetric Channel with Uniform Inputs

Lemma 2.4. For any t ∈ (0,∞) and θ ∈ (0, 1) ∪ (1,∞) the equation

xt(
1−θ
1+θ )

2

=
(1 + θx)tθ + (θ + x)t

(θ + x)tθ + (1 + θx)t

has only one root at x = 1 for x ∈ (0,∞).
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Proof. Let x = eh and define

g(h) = ln
(
(1 + θeh)tθ + (θ + eh)t

)
.

Taking logarithms of the equation in Lemma 2.4 and making above substitutions,

we wish to show that

ht

(
1− θ
1 + θ

)2

= g(h)− g(−h)− ht

has exactly one zero at h = 0. Define

r(h) = g(h)− g(−h)− ht− ht
(

1− θ
1 + θ

)2

.

We will show that r′(h) ≤ 0 implying the desired result.

Note that

r′(h) = g′(h) + g′(−h)− t− t
(

1− θ
1 + θ

)2

.

Observe that

g′(h) = t

(
θ2eh(1 + θeh)t−1 + eh(θ + eh)t−1

(1 + θeh)tθ + (θ + eh)t

)
= t

(
1− θ

(
(1 + θeh)t−1 + (θ + eh)t−1

(1 + θeh)tθ + (θ + eh)t

))
.

Substituting this into r′(h), and after performing elementary manipulations, the

condition r′(h) ≤ 0 becomes equivalent to verifying

4

(1 + θ)2
≤
(

(1 + θeh)t−1 + (θ + eh)t−1

(1 + θeh)tθ + (θ + eh)t

)
+ eh

(
(1 + θeh)t−1 + (θ + eh)t−1

(1 + θeh)t + θ(θ + eh)t

)
.

The above condition can be re-expressed as(
(1 + θeh)t−1 + (θ + eh)t−1

) (
(1 + θeh)t+1 + (θ + eh)t+1

)
≥ 4

(1 + θ)2

(
(1 + θeh)tθ + (θ + eh)t

)
×
(
(1 + θeh)t + θ(θ + eh)t

)
.

Elementary algebraic manipulation reduces the above to(
1− θ
1 + θ

)2 (
(1 + θeh)t − (θ + eh)t

)2

+(1 + θeh)t−1(θ + eh)t−1(1 + θeh − θ − eh)2 ≥ 0,

which trivially holds. Furthermore, equality holds only at h = 0 implying that

r(h) = 0 only at h = 0.



Chapter 3

Lower Bounds on Distributed

Source Coding

3.1 Introduction

Returning to the Körner and Marton’s modulo two sum problem in the Introduc-

tion chapter, the optimal rate region for the Körner and Marton’s modulo two

sum problem in general unknown. Recall that we have two achievable rate regions

for this problem: Slepian-Wolf region (1.7) and Körner-Marton region (1.8). And

the best achievable rate region is given by Ahlswede and Han (1.9) in [2].

Körner showed the following result for the case when Slepian-Wolf region is

optimal:

Theorem 3.1 (Exercise 16.23 in [20]). When H(Z) ≥ min{H(X), H(Y )},

Slepian-Wolf ’s rate region characterizes the optimal rate region RKM(pXY ) for

the Körner-Marton sum modulo two problem.

On the other hand, Körner and Marton gave the following result for the case

when Körner-Marton region is optimal in [33]:

Theorem 3.2. When (X, Y ) follows a DSBS distribution, Körner-Marton re-

gion characterizes the optimal rate region RKM(pXY ) for the Körner-Marton sum

modulo two problem.

Remark 3.1. To the best of the knowledge of the authors, these two theorems are

all the collection of joint distributions pXY for which the optimal rate region has

been determined. Here we will show that linear codes minimize the sum-capacity

for a larger class of distributions that include the DSBS as a special case.

41
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The following is the cut-set lower bound which is rather immediate.

Theorem 3.3 ( [33]). Any achievable rate pair (R1, R2) for the modulo sum

problem must satisfy

R1 ≥ H(Z|Y ) = H(X|Y )

R2 ≥ H(Z|X) = H(Y |X)

R1 +R2 ≥ H(Z).

In this chapter, we first derive a lower bound for the weighted sum-rate of

the optimal rate region for the Körner and Marton’s modulo two sum problem.

Then we will show that the lower bound is tight for several classes of distributions

(including distributions for which the optimality was not known before).

Next, we will present alternate proofs to the converse of the optimal rate

regions of quadratic Gaussian CEO and quadratic Gaussian distributed source

coding problems. These two proofs are similar. First we will derive some weighted

sum rate lower bounds. Then we will use the rotations techniques in [26] to show

the Gaussian distribution minimizes the weighted sum rate lower bound, which

will imply that the Berger-Tung inner bound is optimal for these two settings.

The results on the Körner and Marton’s modulo two sum problem of this

chapter first appear in [48]. This is a joint work with Prof. Chandra Nair. To the

best knowledge of us, the alternate proofs on the quadratic Gaussian CEO and

quadratic Gaussian distributed source coding problems are new in this thesis.

3.2 Main Results on Körner and Marton’s Modulo Two

Sum Problem

The following tensorization lemma will be used in the proof of the theorem.

Lemma 3.1. Let λ ≥ 1 and let (Xn, Y n) be i.i.d distributed according to p(x, y)

where X, Y take values in a finite field. Let Zn be obtained as Zi = Xi ⊕ Yi, i =

1, .., n, i.e. the component-wise modulo sum on the field. Then for any λ ≥ 1 the

following holds:

min
Û :Û→Xn→Y n

λH(Zn|Û)−H(Y n|Û) = n
(

min
U :U→X→Y

λH(Z|U)−H(Y |U)
)
.
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Proof. Clearly, by taking i.i.d. copies of the minimizer of the right-hand side, it

is immediate that the left-hand side is at most the value of the right-hand side.

To show the other direction, observe that

λH(Zn|Û)−H(Y n|Û)

=
n∑
i=1

[
(λ− 1)H(Zi|Û , Zi−1) +H(Zi|Û , Zi−1)−H(Yi|Û , Y n

i+1)
]

=
n∑
i=1

[
(λ− 1)H(Zi|Û , Zi−1) +H(Zi|Û , Zi−1, Y n

i+1)−H(Yi|Û , Zi−1, Y n
i+1)
]

≥
n∑
i=1

λH(Zi|Ui)−H(Yi|Ui),

where Ui = (Û , Y n
i+1, Z

i−1) and note that Ui → Xi → (Yi, Zi) is

Markov. The second equality above uses the Körner-Marton identity that∑n
i=1 I(Zi−1;Yi|Û , Y n

i+1) =
∑n

i=1 I(Y n
i+1;Zi|Û , Zi−1). This completes the

proof.

We now state a lower bound to the optimal rate region, which we believe is

new.

Theorem 3.4. Any achievable rate pair (R1, R2) for the modulo sum problem

must satisfy the following constraints for any λ ≥ 1:

R1 + λR2 ≥ H(XY ) + min
U→X→Y

λH(Z|U)−H(Y |U)

λR1 +R2 ≥ H(XY ) + min
V→Y→X

λH(Z|V )−H(X|V )

Proof. For λ ≥ 1, any sequence of compression schemes that achieves a rate pair

(R1, R2) will require that

n(R1 + λR2) + n(1 + λ)εn

(a)

≥ I(M1M2;XnY n) + (λ− 1)H(M2|M1) + (1 + λ)H(Zn|M1M2)

(b)
= H(XnY n)−H(XnY nM1M2)

::::::::::::::::
+H(M1M2) + (λ− 1)H(M1M2)− (λ− 1)H(M1)

+ (1 + λ)H(ZnM1M2)− (λ+ 1)H(M1M2)

(c)
= H(XnY n) + λH(ZnM1M2) +H(ZnM1M2)−H(ZnY nM1M2)

::::::::::::::::
−H(M1M2)

− (λ− 1)H(M1)
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(d)
= H(XnY n) + λH(ZnM1) + λH(M2|M1Z

n)−H(Y nM1M2)
:::::::::::::

+ I(Zn;Y n|M1M2)

− (λ− 1)H(M1)

(e)

≥ nH(XY ) + λH(ZnM1)−H(Y nM1)
::::::::::

− (λ− 1)H(M1)

(f)
= nH(XY ) + λH(Zn|M1)−H(Y n|M1)

(h)

≥ nH(XY ) + n
(

min
U→X→Y

λH(Z|U)−H(Y |U)
)

The step (a) is due to the fact that nR1 + nR2 ≥ H(M1M2) ≥ I(M1M2;XnY n),

(λ − 1)R2 ≥ (λ − 1)H(M2) ≥ (λ − 1)H(M2|M1), and nεn ≥ H(Zn|M1M2)

by Fano’s inequality; step (b) follows from breaking down conditional en-

tropies and mutual informations to entropies; step (c) follows from the inden-

tity H(XnY nM1M2) = H(ZnXnY nM1M2) = H(ZnY nM1M2); step (d) is try-

ing to get rid of M2 by chain rules and uses the fact that I(Zn;Y n|M1M2) =

H(ZnM1M2) +H(Y nM1M2)−H(ZnY nM1M2)−H(M1M2); step (e) is dropping

the nonnegative terms H(M2|M1Z
n) and I(Zn;Y n|M1M2) (dropping this mutual

information is not really a loss since it’s upper bounded by H(Zn|M1M2), which

is upper bounded by nεn); step (f) is using the definitions of conditional entropies;

while the last step (h) can be single-letterizied by using Lemma 3.1.

The other lower bound in the Theorem 3.4 follows in a similar manner.

Remark 3.2. From section 1.2.3 the equivalence characterization of upper concave

envelopes (1.15) we can see that

min
U→X→Y

λH(Z|U)−H(Y |U)

= −
(

max
U→X→Y

H(Y |U)− λH(Z|U)
)

= −CqX [H(Y )− λH(Z)](pX),

Hence the lower bound in Theorem 3.4 can be written as

R1 + λR2 ≥ H(XY )− CqX [H(Y )− λH(Z)]
∣∣
pX

λR1 +R2 ≥ H(XY )− CqY [H(X)− λH(Z)]
∣∣
pY

(3.1)

for any λ ≥ 1.

The following lemma exhibits two conditions under which the lower bound is

tight. A similar statement also holds when the roles of X and Y are interchanged.
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Lemma 3.2. The lower bound for the weighted sum-rate R1 + λR2, for λ ≥ 1

given in Theorem 3.4 is optimal, i.e. matches the weighted sum-rate of the optimal

rate region, if either of the following conditions hold:

(i) CqX [H(Y )− λH(Z)]
∣∣
pX

= H(Y )− λH(Z) and Y ⊥ Z,

(ii) CqX [H(Y )− λH(Z)]
∣∣
pX

= H(Y |X)− λH(Z|X).

Further if condition (i) holds for some λ1 > 1, then it will also hold for 1 ≤ λ ≤

λ1; and if condition (ii) holds for some λ2 ≥ 1, then it will also hold for λ ≥ λ2.

Remark 3.3. A relatively easier condition to verify is the following: For a fixed

pY |X ( and hence pZ|X), if H(Y )−λH(Z) is concave in the distribution of X, qX ,

then condition (i) above holds. On the other hand if H(Y )− λH(Z) is convex in

the distribution of X, qX , then condition (ii) above holds.

Proof. If condition (i) holds: we have from (3.1)

R1 + λR2 ≥ H(XY )−H(Y ) + λH(Z)

= H(X|Y ) + λH(Z)

= (λ+ 1)H(Z)

where the last equality uses H(X|Y ) = H(Z|Y ) = H(Z). Note that R1 =

H(Z), R2 = H(Z) belongs to the Körner-Marton achievable region, thus showing

the achievability of this optimal weighted sum-rate using linear codes.

If condition (ii) holds: we have from (3.1)

R1 + λR2 ≥ H(XY )−H(Y |X) + λH(Z|X)

= H(X) + λH(Y |X).

Note that R1 = H(X), R2 = H(Y |X) belongs to the Slepian-Wolf achievable

region, thus showing the achievability of this optimal weighted sum-rate using

random binning.

To show the second part, note that condition (i) is equivalent to

H(Y |U)− λH(Z|U) ≤ H(Y )− λH(Z) ∀U −X − Y.

Hence if condition (i) holds for some λ1 then for 1 ≤ λ ≤ λ1, we have

H(Y |U)− λH(Z|U)
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= H(Y |U)− λ1H(Z|U) + (λ1 − λ)H(Z|U)

≤ H(Y )− λ1H(Z) + (λ1 − λ)H(Z)

= H(Y )− λH(Z).

Similarly, note that condition (ii) is equivalent to

H(Y |U)− λH(Z|U) ≤ H(Y |X)− λH(Z|X) ∀U −X − Y.

Hence if condition (ii) holds for some λ2 then for λ ≥ λ2, we have

H(Y |U)− λH(Z|U)

= H(Y |U)− λ2H(Z|U)− (λ− λ2)H(Z|U)

≤ H(Y |X)− λ2H(Z|X)− (λ− λ2)H(Z|X)

= H(Y |X)− λH(Z|X),

where we have used U → X → Z being Markov in the last inequality, apart from

that condition (ii) holds for λ2.

Remark 3.4. The conditions for optimality in the lemma is reminiscent of the

essentially less noisy condition for broadcast channel in [42].

Corollary 3.1. The Slepian-Wolf rate region is optimal for the modulo-sum prob-

lem if CqX [H(Y )−H(Z)]
∣∣
pX

= H(Y |X)−H(Z|X) = 0. Similarly, it is optimal

if CqY [H(X)−H(Z)]
∣∣
pY

= H(X|Y )−H(Z|Y ) = 0.

Proof. If CqX [H(Y )−H(Z)]
∣∣
pX

= H(Y |X)−H(Z|X), then we have from Equa-

tion (3.1) that

R1 +R2 ≥ H(XY ).

The constraints R1 ≥ H(X|Y ) and R2 ≥ H(Y |X) follow from Theorem 3.3. The

other condition follows similarly.

3.2.1 Application to binary alphabets

In this section we will study distributions over pairs of binary alphabets and

determine conditions under which one of the conditions in Lemma 3.2 hold. We

will see that we can recover all the previously determined cases as well as recover

new distributions from the results listed below.
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Notation: We will parameterize the space of distributions over pairs of binary

alphabets, pXY as follows: PX(X = 0) = x,PY |X(Y = 0|X = 0) = c,PY |X(Y =

1|X = 1) = d.

Proposition 3.1. The optimal weighted sum-rate of the optimal rate region is

given by the Slepian Wolf region if any of the following conditions hold:

(1) For any λ, if (c− 1
2
)(d− 1

2
) ≤ 0, or

(2) λ ≥
(
c−d̄
c−d

)2

, c 6= d, and (c− 1
2
)(d− 1

2
) > 0.

where d̄ = 1− d.

Proof. If condition (1) holds: then it suffices to show by Corollary 3.1 that

H(Y )−H(Z) is convex in qX , which will then imply that CqX [H(Y )−H(Z)]
∣∣
pX

=

H(Y |X)−H(Z|X). Denoting q(X = 0) = u, we need to show that

g(u) := H2(uc+ ūd̄)−H2(uc+ ūd)

is convex in u, when (c− 1
2
)(d− 1

2
) ≤ 0. Here H2(x) = −x log2 x−(1−x) log2(1−x)

denotes the binary entropy function. Elementary calculations show that g(u) is

convex for u ∈ [0, 1] if and only if (c− 1
2
)(d− 1

2
) ≤ 0.

If condition (2) holds: then it suffices to show by Lemma 3.2 that for λ2 =(
c−d̄
c−d

)2

, we have CqX [H(Y )− λ2H(Z)]
∣∣
pX

= H(Y |X)− λ2H(Z|X). As before it

suffices to show that

g(u) := H2(uc+ ūd̄)− λ2H2(uc+ ūd)

is convex in u. This is again verifiable by elementary calculations.

Remark 3.5. The following points are worth noting:

(i) The condition (1) above is already known and stated as exercise 16.23 page

390 of Csiszár and Körner’s book [20]. One can verify that H(Z) ≥ H(Y )

is equivalent to (c− 1
2
)(d− 1

2
) ≤ 0.

(ii) Note that an equivalent proposition can also be stated for the alternate

parameterization: P(Y = 0) = y,P(X = 0|Y = 0) = ĉ,P(X = 1|Y = 1) =

d̂.
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The next proposition determines conditions under which the optimal weighted

sum-rate is given by the Körner-Marton region, i.e. satisfy the first constraint of

Lemma 3.2. Continuing with the same notation P(X = 0) = x,P(Y = 0|X =

0) = c,P(Y = 1|X = 1) = d, since we require Y to be independent of c, we need

to restrict to x =
√
dd̄√

dd̄+
√
cc̄
.

Proposition 3.2. Let P(X = 0) = x,P(Y = 0|X = 0) = c,P(Y = 1|X = 1) = d

where x =
√
dd̄√

dd̄+
√
cc̄
. The optimal weighted sum-rate of the optimal rate region is

given by the Körner-Marton region, i.e. using linear codes, if any of the following

conditions hold:

(A) For any λ, if c = d, or

(B) 1 ≤ λ ≤ λ1, c 6= d, and (c− 1
2
)(d− 1

2
) > 0, where λ1 is the larger root of the

quadratic equation

λ2(c− d)2 + λ
(
2(c− d)(c− d̄)− 4dd̄(c− c̄)2

)
+ (c− d̄)2 = 0.

where d̄ = 1− d, c̄ = 1− c.

Proof. If condition (A) in Proposition 3.2 holds: then Z is independent of X and

H(Y )− λH(Z) is concave in qX , therefore

CqX [H(Y )− λH(Z)]
∣∣
pX

= H(Y )− λH(Z).

Therefore Condition (i) in Lemma 3.2 (see (3.1)) is satisfied and we are done. Note

that this is precisely the DSBS source whose capacity region was established by

Körner and Marton in [33].

If condition (B) in Proposition 3.2 holds: define

g(u) := H2(uc+ ūd̄)− λ1H2(uc+ ūd)

where λ1 is the larger root of the quadratic equation

λ2(c− d)2 + λ
(
2(c− d)(c− d̄)− 4dd̄(c− c̄)2

)
+ (c− d̄)2 = 0.

Then elementary calculations can be used to verify that g(u) is concave for u ∈

[0, 1] and hence

CqX [H(Y )− λH(Z)]
∣∣
pX

= H(Y )− λH(Z).

As before Condition (i) in Lemma 3.2 (see (3.1)) is satisfied and we are done.
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Remark 3.6. The following points are worth noting:

(i) As long as, (c− 1
2
)(d− 1

2
) > 0, we can see that λ1 > 1, and hence the optimal

sum-rate, will be given by the Körner-Marton region, i.e. using linear codes.

Note that we still need x =
√
dd̄√

dd̄+
√
cc̄
. Thus linear coding strategy of Körner-

Marton are optimal for some larger class of parameters.

(ii) As before, an equivalent Proposition can also be stated for the alternate

parameterization: P(Y = 0) = y,P(X = 0|Y = 0) = ĉ,P(X = 1|Y = 1) =

d̂.

3.2.2 Comparison of the bounds

In [2] Ahlswede and Han chose the following pXY given by

pXY =

pXY (0, 0) pXY (0, 1)

pXY (1, 0) pXY (1, 1)

 =

0.003920 0.019920

0.976080 0.000080


where row index is x ∈ {0, 1}, column index is y ∈ {0, 1}, to show that their

achievable rate region performs strictly better than both Körner and Marton’s

rate region and Slepian and Wolf’s rate region. It turns out that for this distribu-

tion Y is indeed independent of Z. Therefore from Remark 3.6 we already know

that the optimal sum-rate is given by the Körner-Marton linear coding region.

Figure 3.1 plots Ahlswede-Han’s rate region, the lower bound from Theorem

3.4, and the cut-set lower bound for the above example.

As one can see readily and as established in Proposition 3.2, the lower bound in

Theorem 3.4 yields the optimal sum-rate of 2H(Z) for this example. By numerical

simulations: the largest λ for which the hyperplane of the lower bound passes

through the (H(Z), H(Z)) point is λ∗1 = 5.253 (matches, curiously, the sufficient

condition established in Proposition 3.2), while that for the Ahlswede-Han region

is λ†1 = 5.338. Then the largest λ for which the hyperplane of the lower bound

passes through the (H(X), H(Y |X)) point is λ∗2 = 25.844 (matches the sufficient

condition established in Proposition 3.1), while, by numerical simulations, that

for the Ahlswede-Han region is λ†2 = 6.620.
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6 · 10−2 0.1 0.14 0.18

1.5
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3.5
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(H(Z), H(Z))

(H(X), H(Y |X))

R1

R
2

Ahlswede-Han region

Lower bound (Theorem 4)

Cutset lower bound

Figure 3.1: Comparison of Ahlswede-Han region and our lower bound

3.2.3 Application to higher alphabet fields

The modulo-sum problem for binary alphabets has a peculiar structure that was

exploited in the Exercise 16.23 of [20]. If H(Z) ≥ H(Y ), then PY |X was a

stochastic degradation of pZ|X , and the reverse held if H(Y ) ≥ H(Z). In general

we know that for higher alphabets the above dichotomy does not hold. Hence

Lemma 3.2 establishes that a better comparision between the channels pZ|X and

pY |X for obtaining the optimal weighted sum-rate is related to (essentially) less

noisy comparison.

Below we provide two examples in GF (3) for which the results in Lemma 3.2

yield optimality. Here Z = (X + Y ) mod 2 in GF (3).

For GF (3), one instance of pXY satisfying that Z is independent of Y and

CqX [H(Y )−H(Z)]
∣∣
pX

= H(Y )−H(Z) is given by the following distribution:

pXY =


0.08 0.06 0.18

0.08 0.18 0.06

0.24 0.06 0.06


where row index is x ∈ {0, 1, 2}, column index is y ∈ {0, 1, 2}.

One can check that for this joint distribution pXY , P (Y ) = [0.4 0.3 0.3],

P (Z) = [0.2 0.2 0.6], so Z is independent of Y .

Besides, one could construct a auxiliary Ẑ such that X → Y → Ẑ and
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pẐ|X = pZ|X , by the following choice of pẐ|Y :

P (Ẑ = 0|Y = 0) =
1

8
P (Ẑ = 1|Y = 0) =

1

8
P (Ẑ = 2|Y = 0) =

3

4

P (Ẑ = 0|Y = 1) =
1

6
P (Ẑ = 1|Y = 1) =

1

3
P (Ẑ = 2|Y = 1) =

1

2

P (Ẑ = 0|Y = 2) =
1

3
P (Ẑ = 1|Y = 2) =

1

6
P (Ẑ = 2|Y = 2) =

1

2

X → Y → Ẑ gives that

I(U ;Y ) ≥ I(U ; Ẑ) ∀ pU |X

⇔H(Y )−H(Ẑ) ≥ H(Y |U)−H(Ẑ|U) ∀ pU |X
(a)⇒H(Y )−H(Z) ≥ H(Y |U)−H(Z|U) ∀ pU |X
(b)⇔H(Y )−H(Z) ≥ CqX [H(Y )−H(Z)]

The last step (a) follows from pẐ|X = pZ|X . Step (b) follows from the equivalent

definition (1.15) of upper concave envelope in 1.2.3.

So when pY |X is fixed by this joint distribution pXY , f(qX) = H(Y )−H(Z) =

H(Y )−H(Ẑ) is concave with respect to qX .

Thus the first constraint (i) of Lemma 3.2 is satisfied for λ = 1, and thus

Körner-Marton rate region is sum rate optimal.

And another instance of pXY satisfying CqX [H(Y ) − H(Z)]
∣∣
pX

= H(Y |X) −

H(Z|X) is given by the following distribution:

pXY =


0.02 0.02 0.48

0.02 0.06 0.16

0.06 0.02 0.16


where row index is x ∈ {0, 1, 2}, column index is y ∈ {0, 1, 2}.

Similar to above, one could construct a auxiliary Ŷ such that X → Z → Ŷ

and pŶ |X = pY |X , by the following choice of pŶ |Z :

P (Ŷ = 0|Z = 0) =
1

14
P (Ŷ = 1|Z = 0) =

5

14
P (Ŷ = 2|Z = 0) =

4

7

P (Ŷ = 0|Z = 1) =
5

14
P (Ŷ = 1|Z = 1) =

1

14
P (Ŷ = 2|Z = 1) =

4

7

P (Ŷ = 0|Z = 2) =
1

42
P (Ŷ = 1|Z = 2) =

1

42
P (Ŷ = 2|Z = 2) =

20

21

So when pZ|X is fixed by this joint distribution pXY , one can verify that

f(qX) = H(Y ) − H(Z) = H(Ŷ ) − H(Z) is convex with respect to qX . So the

second constraint (ii) of Lemma 3.2 is satisfied for λ = 1, thus Slepian-Wolf rate

region is sum rate optimal.
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3.3 Alternate Proof to Quadratic Gaussian CEO Problem

Encoder 1: f
(n)
1

Encoder 2: f
(n)
2

Decoder: g(n)Xn (X̂n, D)

Zn1

Zn2

+

+

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Y n1

Y n2

Figure 3.2: Quadratic Guassian CEO distributed source coding

The CEO problem was first introduced by Berger, Zhang, and Viswanathan

[10]. The setting for quadratic Gaussian CEO distributed source coding is

depicted in figure 3.2: Let X be some source generating a i.i.d. sequence

of random variables Xi ∼ N(0, P ), denoted as WGN(P). The encoder 1 ob-

serves Y1 = X + Z1 where Z1 is some additive Gaussian noise WGN(N1) and

maps it to M1 ∈ [1 : 2nR1) by encoding function f
(n)
1 , the encoder 2 observes

Y2 = X + Z2 where Z2 is some additive Gaussian noise WGN(N2) and maps it

to M2 ∈ [1 : 2nR2 ] by encoding function f
(n)
2 . The decoder uses some decoding

function g(n) to construct some X̂n from (M1,M2).

Similar to the communication problems in introduction chapter, one could

define a (n,R1, R2) code C := (f
(n)
1 , f

(n)
2 , g(n)) for Quadratic Guassian CEO dis-

tributed source coding. A rate-distortion triple (R1, R2, D) is said to be achievable

if there exists a sequence of codes Cn such that

lim sup
n→∞

E

[
1

n

n∑
i=1

(
Xi − X̂i

)2
]
≤ D

And the rate-distortion region RCEO(D) is defined as the closure of the set of all

achievable rate pairs (R1, R2) such that (R1, R2, D) is achievable.

Oohama [50] proved the following single-letter characterization for RCEO(D),

see Chapter 12 in [21]:
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Theorem 3.5. Consider the quadratic Guassian CEO distributed source coding

on X, Y1, Y2 satisfying that PXY1Y2 ∼ N

~0,

P P P

P P +N1 P

P P P +N2


, the rate-

distortion region RCEO(D) is the set of rate pairs (R1, R2) such that

R1 ≥ r1 +
1

2
log+

(
1

D

(
1

P
+

1− 2−2r2

N2

)−1
)

R2 ≥ r2 +
1

2
log+

(
1

D

(
1

P
+

1− 2−2r1

N1

)−1
)

R1 +R2 ≥ r1 + r2 +
1

2
log+(

P

D
)

for some r1, r2 ≥ 0 that satisfy the condition

D ≥
(

1

P
+

1− 2−2r1

N1

+
1− 2−2r2

N2

)−1

.

Here 1
2

log+(x) = 1
2

max{log x, 0}.

The achievablity of above RCEO(D) can be proven by using the Berger-Tung

coding scheme, see [9, 51, 57]. One can check chapter 12 in [21] for details. The

converse proof employs the Entropy Power Inequality (EPI), see Oohama [50].

There is also a proof of the sum rate optimality, see [63], for the Gaussian CEO

problem without using EPI by exploiting the semidefinite partial order of the

distortion covariance matrices associated with the minimum mean squared error

(MMSE) estimation and the so-called reduced optimal linear estimation.

Notice that when D ≥ P , the decoder could choose the mean of X, 0, as the

estimate X̂, in this case R1, R2 can be set to 0. So the interesting case is when

D < P .

With the re-parameterization Ñj =
Nj

2rj−1
, j = 1, 2 and λ ≥ 1, RCEO(D)

can be equivalently written in terms of weighted sum rate. And here we will

present an alternate proof for the converse of the weighted sum rate of RCEO(D),

Theorem 3.6. The main idea is to derive weighted sum rate lower bounds in

Theorem 3.7, and then evaluate the weighted sum rate lower bounds using the

rotation techniques in [26].

One should notice that the weighted sum rate lower bound derived here is

in a similar spirit as the improved lower bound for multiterminal source coding

in [61], in terms of the identification of auxiliary random variables. However, to
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the best knowledge of the authors, applying rotation techinques to the evaluation

of these lower bounds should be new.

Theorem 3.6. For 0 < D < P and λ ≥ 1, any rate pairs (R1, R2) in RCEO(D)

must satisfy that

R1 + λR2 ≥ min
Ñ1,Ñ2≥0:

1
D
≤ 1
P

+ 1
N1+Ñ1

+ 1
N2+Ñ2

1

2
log

P

D
+

1

2
log

N1 + Ñ1

Ñ1

+
λ

2
log

N2 + Ñ2

Ñ2

+
λ− 1

2
log+

P (N1 + Ñ1)

(P +N1 + Ñ1)D

λR1 +R2 ≥ min
Ñ1,Ñ2≥0:

1
D
≤ 1
P

+ 1
N1+Ñ1

+ 1
N2+Ñ2

1

2
log

P

D
+

1

2
log

N2 + Ñ2

Ñ2

+
λ

2
log

N1 + Ñ1

Ñ1

+
λ− 1

2
log+

P (N2 + Ñ2)

(P +N2 + Ñ2)D

(3.2)

3.3.1 Weighted Sum Rate Lower Bounds

Here we state a weighted sum rate lower bounds for a generalized CEO distributed

source coding setting depicted in Figure 3.3.

Encoder 1: f
(n)
1

Encoder 2: f
(n)
2

Decoder: g(n)Xn

Channel 1: W1

Channel 2: W2

Y n1

Y n2

(X̂n, D)

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Figure 3.3: generalized CEO distributed source coding

Theorem 3.7. Consider the generalized CEO distributed source coding on

X, Y1, Y2 satisfying that X is some source, Y1 and Y2 are obtained by passing

X through some discrete memoryless channel W1 and W2 respectively. The dis-

tortion criterion is given by

lim sup
n→∞

E

(
1

n

n∑
i=1

d(Xi, X̂i)

)
≤ D.
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For any λ ≥ 1, any achievable rate-distortion triple (R1, R2, D) must satisfy that

R1 + λR2 ≥H(XY1) + λH(Y2|X) + (λ− 1) max
{
H(X|U1WQ)−H(X|X̂Q), 0

}
−H(X|X̂Q) +H(X|U1WQ)−H(XY1|U1WQ)

+ λH(X|U2WQ)− λH(XY2|U2WQ)

R2 + λR1 ≥H(XY2) + λH(Y1|X) + (λ− 1) max
{
H(X|U2WQ)−H(X|X̂Q), 0

}
−H(X|X̂Q) +H(X|U2WQ)−H(XY2|U2WQ)

+ λH(X|U1WQ)− λH(XY1|U1WQ)

subject to the constraints

U1 ← QWY1 ← QWX → QWY2 → U2

QW ⊥ XY1Y2

X̂ ← QWU1U2 → XY1Y2

E[d(X, X̂)] ≤ D.

(3.3)

Proof. Observe that for any code C for generalized CEO distributed source coding

problem, we have the long Markov chain M1 ← Y n
1 ← Xn → Y n

2 →M2.

For any sequence of codes Cn that achieves the rate pairs (R1, R2) for gener-

alized CEO distributed source coding, when λ ≥ 1, we have

nR1 + λnR2 + λH(Xn|M1M2) (3.4)

≥I(M1;Y n
1 ) + λI(M2;Y n

2 |M1) + λH(Xn|M1M2)

(a)
=I(M1;Y n

1 ) + λI(M2;Y n
2 X

n|M1) + λH(Xn|M1M2)

(b)
=I(M1;Y n

1 ) + λI(M2;Y n
2 |M1X

n) + λI(M2;Xn|M1) + λH(Xn|M1M2)

(c)
=H(Y n

1 )−H(Y n
1 |M1) + λH(Y n

2 |M1X
n)− λH(Y n

2 |M1M2X
n) + λH(Xn|M1)

(d)
=H(Y n

1 ) + λH(Xn|M1)−H(Y n
1 |M1) + λH(Y n

2 |M1X
n)− λH(Y n

2 |M2X
n)

(e)
=H(Y n

1 ) +(((((((λH(Xn|M1)−H(Y n
1 |M1) + λH(Y n

2 X
n|M1)−(((((((λH(Xn|M1)

− λH(XnY n
2 |M2) + λH(Xn|M2)

(f)
=H(Y n

1 )−H(Y n
1 |M1)

::::::::::
+ λH(Y n

2 |Xn) + λH(Xn|M1)− λH(XnY n
2 |M2) + λH(Xn|M2)

(g)
=H(Y n

1 ) + λH(Y n
2 |Xn) +H(Xn|Y n

1 )
::::::::::

+ (λ− 1)H(Xn|M1)

+H(Xn|M1)−H(XnY n
1 |M1)

::::::::::::::
+ λH(Xn|M2)− λH(XnY n

2 |M2)

(h)
=nH(XY1) + λnH(Y2|X) + (λ− 1)H(Xn|M1) +

n∑
i=1

[
H(Xi|M1X

n/iY i−1
1 )
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−H(XiY1i|M1X
n/iY i−1

1 )
]

+
n∑
i=1

[
λH(Xi|M2X

n/iY i−1
2 )− λH(XiY2i|M2X

n/iY i−1
2 )

]
(3.5)

Step (a) is due to M2 → Y n
2 M1 → Xn; step (b) is applying chain rules on the blue

term λI(M2;Y n
2 |M1X

n); step (c) is applying chain rules on the two underlined

terms I(M1;Y n
1 ) and λI(M2;Y n

2 |M1X
n); step (d) uses M1 → M2X

n → Y n
2 ; step

(e) is canceling λH(Xn|M1) and using chain rule on the red terms λH(Y n
2 |M2X

n);

step (f) is using chain rule on the orange term λH(Y n
2 X

n|M1); step (g) is using

chain rule to break the wavy-underlined term H(Y n
1 |M1) by chain rules; step (h)

follows from applying the well-known Körner Marton identity (see Lemma 3.3)

twice on the two purple terms.

Here the term H(Xn|M1M2) can be single-letterized in the following ways:

H(Xn|M1M2) = H(Xn|X̂nM1M2) ≤
n∑
i=1

H(Xi|X̂i)

Observe that left-hand side (3.4) has λH(Xn|M1M2), and right-hand side

(3.5) has (λ− 1)H(Xn|M1), and λ ≥ 1. There are two ways to lower bound the

difference (λ− 1) [H(Xn|M1)−H(Xn|M1M2)]:

H(Xn|M1)−H(Xn|M1M2) ≥ max

{
0,

n∑
i=1

H(Xi|M1X
n/iY i−1

1 )−
n∑
i=1

H(Xi|X̂i)

}

Thus above weighted sum rate can be rewritten as

nR1 + λnR2 ≥nH(XY1) + λnH(Y2|X)−
n∑
i=1

H(Xi|X̂iX
n/i)

+ (λ− 1) max

{
0,

n∑
i=1

H(Xi|M1X
n/iY i−1

1 )−
n∑
i=1

H(Xi|X̂i)

}

+
n∑
i=1

H(Xi|M1X
n/iY i−1

1 )−H(XiY1i|M1X
n/iY i−1

1 )

+ λH(Xi|M2X
n/iY i−1

2 )− λH(XiY2i|M2X
n/iY i−1

2 )

Similarly, by considering nR2 + λnR1, one could get

nR2 + λnR1 ≥nH(XY2) + λnH(Y1|X)−
n∑
i=1

H(Xi|X̂i)

+ (λ− 1) max

{
0,

n∑
i=1

H(Xi|M2X
n/iY i−1

2 )−
n∑
i=1

H(Xi|X̂i)

}
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+
n∑
i=1

H(Xi|M2X
n/iY i−1

1 )−H(XiY2i|M2X
n/iY i−1

2 )

+ λH(Xi|M1X
n/iY i−1

1 )− λH(XiY1i|M1X
n/iY i−1

1 )

Identify auxiliary random varibles as Wi = Xn/i, U1i = M1Y
i−1

1 , U2i =

M2Y
i−1

2 . And let Q be the uniform distribution over i = 1, · · · , n. the weighted

sum rate satisfies that

R1 + λR2 ≥H(XY1) + λH(Y2|X)−H(X|X̂Q)

+ (λ− 1) max
{

0, H(X|U1WQ)−H(X|X̂Q)
}

+H(X|U1WQ)−H(XY1|U1WQ) + λH(X|U2WQ)− λH(XY2|U2WQ)

R2 + λR1 ≥H(XY2) + λH(Y1|X)−H(X|X̂Q)

+ (λ− 1) max
{

0, H(X|U2WQ)−H(X|X̂Q)
}

+H(X|U2WQ)−H(XY2|U2WQ) + λH(X|U1WQ)− λH(XY1|U1WQ)

And for this set of auxiliary random variables, one can verify the constraints (3.3)

holds:

U1 ← QWY1 ← QWX → QWY2 → U2

QW ⊥ XY1Y2

X̂ ← QWU1U2 → XY1Y2

E[d(X, X̂)] ≤ D.

Lemma 3.3 (Körner Marton identity, (4.14) in [34].). For any tuple of random

variables (U, Y n, Zn) the following equality holds:

H(Y n|U)−H(Zn|U) =
n∑
i=1

H(Yi|UY i−1Zn
i+1)−H(Zi|UY i−1Zn

i+1)

3.3.2 Optimality of Achievable Weighted Sum Rate

In this section, we will use the weighted sum rate lower bounds derived in Theo-

rem 3.7 to prove Theorem 3.6.

Proof. For quadratic Gaussian CEO distributed source coding, the quadratic dis-

tortion measure is d(x, x̂) = (x − x̂)2. The weighted sum rate lower bounds in

above Theorem 3.7 can be further simplified.
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Observe that the quadratic distortion measure impose an upper bound on the

term H(X|X̂Q).

H(X|X̂Q) ≤H(X − X̂|Q)

=H(X − X̂)

(a)

≤ 1

2
log 2πeE

(
(X − X̂)2

)
≤1

2
log 2πeD

where step (a) is from Gaussian maximizes the differential entropy under variance

constraint. So we can replace H(X|X̂Q) with 1
2

log 2πeD in the weighted sum

rate lower bounds in Theorem 3.7.

On the other hand, the Markov chain X̂ ← QWU1U2 → XY1Y2 in constraints

(3.3) implies that

H(X|U1U2QW ) ≤ H(X|X̂Q)

So we have

H(X|U1U2QW ) ≤ 1

2
log 2πeD.

So the constraints (3.3) can be relaxed to

H(X|U1U2QW ) ≤ 1

2
log 2πeD

U1 ← QWY1 ← QWX → QWY2 → U2

QW ⊥ XY1Y2.

Write Q = QW , the weighted sum rate lower bounds in above Theorem 3.7

can be simplified to be

R1 + λR2 ≥H(XY1) + λH(Y2|X) + (λ− 1) max

{
H(X|U1Q)− 1

2
log 2πeD, 0

}
− 1

2
log 2πeD +H(X|U1Q)−H(XY1|U1Q) + λH(X|U2Q)− λH(XY2|U2Q)

R2 + λR1 ≥H(XY2) + λH(Y1|X) + (λ− 1) max

{
0, H(X|U2Q)− 1

2
log 2πeD

}
− 1

2
log 2πeD +H(X|U2Q)−H(XY2|U2Q) + λH(X|U1Q)− λH(XY1|U1Q)

(3.6)
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subject to the constraints:

H(X|U1U2Q) ≤ 1

2
log 2πeD

U1 ← QY1 ← QX → QY2 → U2

Q ⊥ XY1Y2

(3.7)

Above constraint 3.7 implies that the distribution pQU1U2|XY1Y2 can be explicitly

written in the form of pU1|QY1pU2|QY2pQ.

The weighted sum rate lower bounds in Equation (3.6) can be written as a

infmax problem.

R1 + λR2 ≥ inf
pU1|QY1pU2|QY2pQ

H(XY1) + λH(Y2|X)

+ (λ− 1) max

{
H(X|U1Q)− 1

2
log 2πeD, 0

}
− 1

2
log 2πeD

+H(X|U1Q)−H(XY1|U1Q) + λH(X|U2Q)− λH(XY2|U2Q)

(a)
= inf

pU1|QY1pU2|QY2pQ
max
α∈[0,1]

1

2
log 2πePN1 +

λ

2
logN2 −

α(λ− 1) + 1

2
log 2πeD

+ ((λ− 1)α + 1)H(X|U1Q)−H(XY1|U1Q)

+ λH(X|U2Q)− λH(XY2|U2Q)

(b)
= max

α∈[0,1]

1

2
log 2πePN1 +

λ

2
logN2 −

α(λ− 1) + 1

2
log 2πeD

+ inf
pU1|QY1pU2|QY2pQ

((λ− 1)α + 1)H(X|U1Q)−H(XY1|U1Q)

+ λH(X|U2Q)− λH(XY2|U2Q)

R2 + λR1 ≥ inf
pU1|QY1pU2|QY2pQ

H(XY2) + λH(Y1|X)

+ (λ− 1) max

{
0, H(X|U2Q)− 1

2
log 2πeD

}
− 1

2
log 2πeD

+H(X|U2Q)−H(XY2|U2Q) + λH(X|U1Q)− λH(XY1|U1Q)

(a)
= inf

pU1|QY1pU2|QY2pQ
max
α∈[0,1]

1

2
log 2πePN2 +

λ

2
logN1 −

α(λ− 1) + 1

2
log 2πeD

+ ((λ− 1)α + 1)H(X|U2Q)−H(XY2|U2Q)

+ λH(X|U1Q)− λH(XY1|U1Q)

(b)
= max

α∈[0,1]

1

2
log 2πePN2 +

λ

2
logN1 −

α(λ− 1) + 1

2
log 2πeD

+ inf
pU1|QY1pU2|QY2pQ

((λ− 1)α + 1)H(X|U2Q)−H(XY2|U2Q)

+ λH(X|U1Q)− λH(XY1|U1Q)
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where pU1|QY1pU2|QY2pQ satisfies the constraint (3.7).

Step (a) comes from max
{
H(X|U1Q)− 1

2
log 2πeD, 0

}
=

maxα∈[0,1] αH(X|U1Q) − α
2

log 2πeD. Step (b) comes from exchanging inf

and max by Theorem 5 in Appendix of [24].

Thus to evaluate above weighted sum rate lower bounds, suffices to compute

the following functional

inf
pU1|QY1pU2|QY2pQ

κH(X|U1Q)−H(XY1|U1Q) + λH(X|U2Q)− λH(XY2|U2Q)

(3.8)

where pU1|QY1pU2|QY2pQ satisfies the constraints 3.7 and κ ≥ 1, λ ≥ 1,

Lemma 3.4 shows that the infimum of (3.8) is attained by Q = ∅ and U1 =

Y1 + Ũ1, Ũ1 ⊥ Y1, Ũ1 ∼ N(0, Ñ1), U2 = Y2 + Ũ2, Ũ2 ⊥ Y2, Ũ2 ∼ N(0, Ñ2) subject to

the constraints (3.9).

Thus the weighted sum rate can be written

R1 + λR2 ≥ max
α∈[0,1]

min
Ñ1,Ñ2≥0:

1
D
≤ 1
P

+ 1
N1+Ñ1

+ 1
N2+Ñ2

1

2
log 2πePN1 +

λ

2
logN2

− α(λ− 1) + 1

2
log 2πeD + ((λ− 1)α + 1)

1

2
log 2πe

P (N1 + Ñ1)

P +N1 + Ñ1

− 1

2
log 2πe

PN1Ñ1

P +N1 + Ñ1

+
λ

2
log 2πe

P (N2 + Ñ2)

P +N2 + Ñ2

− λ

2
log 2πe

PN2Ñ2

P +N2 + Ñ2

R2 + λR1 ≥ max
α∈[0,1]

min
Ñ1,Ñ2≥0:

1
D
≤ 1
P

+ 1
N1+Ñ1

+ 1
N2+Ñ2

1

2
log 2πePN2 +

λ

2
logN1

− α(λ− 1) + 1

2
log 2πeD +

(λ− 1)α + 1

2
log 2πe

P (N2 + Ñ2)

P +N2 + Ñ2

− 1

2
log 2πe

PN2Ñ2

P +N2 + Ñ2

+
λ

2
log 2πe

P (N1 + Ñ1)

P +N1 + Ñ1

− λ

2
log 2πe

PN1Ñ1

P +N1 + Ñ1

For this, again by Theorem 5 in Appendix of [24], we could exchange max and

min here. Then we will reach the weighted sum rate Equation (3.2).

Lemma 3.4. Given PXY1Y2 ∼ N

~0,

P P P

P P +N1 P

P P P +N2


, for any κ, λ ≥ 1,

inf
pU1|QY1pU2|QY2pQ

κH(X|U1Q)−H(XY1|U1Q) + λH(X|U2Q)− λH(XY2|U2Q)
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subject to the constraints 3.7, is attained by Q = ∅ and U1 = Y1 + Ũ1, Ũ1 ⊥

Y1, Ũ1 ∼ N(0, Ñ1), U2 = Y2 + Ũ2, Ũ2 ⊥ Y2, Ũ2 ∼ N(0, Ñ2) subject to:

H(X|U1U2) ≤ 1

2
log 2πeD (3.9)

Proof. This proof is essentially using the rotation trick in [26] with along some

perturbation ideas for establishing strict sub-additivity, see [27].

For any small enough ε1, ε2 > 0, consider the following perturbed optimization

problem:

Given PXY1Y2 ∼ N

~0,

P P P

P P +N1 P

P P P +N2


, for any κ, λ ≥ 1, want to

find the infimum of the following function:

Θε1,ε2
κ,λ (pU1|QY1pU2|QY2pQ) :=(κ+ ε2)H(X|U1Q)−H(XY1|U1Q)

+ (λ+ ε1)H(X|U2Q)− λH(XY2|U2Q)

subject to the constraints

H(X|U1U2Q) ≤ 1

2
log 2πeD (3.10)

From Lemma 3.5, we could know that for ε1, ε2 > 0, infimum value of Θε1,ε2
κ,λ is

attained by Q = ∅ and U1 = Y1 + Ũ1, Ũ1 ⊥ Y1, Ũ1 ∼ N(0, Ñ1), U2 = Y2 + Ũ2, Ũ2 ⊥

Y2, Ũ2 ∼ N(0, Ñ2) subject to the constraints 3.9.

Use G to denote the set of pU1|QY1pU2|QY2pQ satisfying Q = ∅ and U1 = Y1 +

Ũ1, Ũ1 ⊥ Y1, Ũ1 ∼ N(0, Ñ1), U2 = Y2 + Ũ2, Ũ2 ⊥ Y2, Ũ2 ∼ N(0, Ñ2) subject to the

constraints 3.9.

It remains to show that when ε1 = ε2 = 0, the minimizing distribution of

Θ0,0
κ,λ is also attained by some distribution in G. This can be done by a continuity

argument.

For any ε1, ε2 > 0 close to 0, observe that for any distribution pU1|QY1pU2|QY2pQ

satisfying the constraints 3.10, we have

Θ0,0
κ,λ =Θε1,ε2

κ,λ − ε1H(X|U2Q)− ε2H(X|U1Q)

≥Θε1,ε2
κ,λ −

ε1 + ε2

2
log 2πeP

so we have

inf
pU1|QY1pU2|QY2pQ

Θ0,0
κ,λ ≥ min

pU1|QY1pU2|QY2pQ
Θε1,ε2
κ,λ −

ε1 + ε2

2
log 2πeP
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Take ε1, ε2 → 0, we get

inf
pU1|QY1pU2|QY2pQ

Θ0,0
κ,λ ≥ lim inf

ε1,ε2→0
min

pU1|QY1pU2|QY2pQ
Θε1,ε2
κ,λ

On the other hand, when ε1, ε2 → 0, pick the minimizing distribu-

tion p∗ε1,ε2 ∈ G for Θε1,ε2
κ,λ to construct a sequence so that Θε1,ε2

κ,λ (p∗ε1,ε2) →

lim infε1,ε2→0 minpU1|QY1pU2|QY2pQ
Θε1,ε2
κ,λ .

Since G is compact, there exists some subsequence that will tend to some limit

p∗ ∈ G. Since Θε1,ε2
κ,λ is continuous with respect to pU1|QY1pU2|QY2pQ, so

Θ0,0
κ,λ(p

∗) = lim
ε1,ε2→0

Θε1,ε2
κ,λ (p∗ε1,ε2) = lim inf

ε1,ε2→0
min

pU1|QY1pU2|QY2pQ
Θε1,ε2
κ,λ

Therefore, p∗ ∈ G attain the minimizing value of Θ0,0
κ,λ subject to the con-

straints (3.7).

Lemma 3.5. For ε1, ε2 > 0, and κ, λ ≥ 1, infimum of Θε1,ε2
κ,λ

Θε1,ε2
κ,λ (pU1|QY1pU2|QY2pQ) =(κ+ ε2)H(X|U1Q)−H(XY1|U1Q)

+ (λ+ ε1)H(X|U2Q)− λH(XY2|U2Q)

subject to the constraints (3.10), is attained by Q = ∅ and U1 = Y1 + Ũ1, Ũ1 ⊥

Y1, Ũ1 ∼ N(0, Ñ1), U2 = Y2+Ũ2, Ũ2 ⊥ Y2, Ũ2 ∼ N(0, Ñ2) subject to the constraints

3.9.

Proof. Since scaling U1, U2, Q doesn’t affect Θε1,ε2
κ,λ and the constraints (3.10), one

could truncate U1, U2, Q to some random variables with support on [0, 1]. This

will give tightness of the joint distribution PXY1Y2U1U2Q. By routine arguments in

Appendix II of [26] one can show that there is a minimizer from the tightness of

the sequence of distributions.

So we assume infimum of Θε1,ε2
κ,λ is attained by some minimizing distribution

p∗U1|QY1p
∗
U2|QY2p

∗
Q, and write the joint distribution of U1, U2, X, Y1, Y2, Q by p∗U1|QY1

p∗U2|QY2p
∗
QpXY1Y2 . Take two i.i.d. copies of the joint distribution at the minimizer

and denote them using subscripts a, b respectively. Let (·)+ = (·)a+(·)b√
2

and (·)− =

(·)a−(·)b√
2

, where (·) can be replaced with X, Y1, Y2.

Denote infimum of Θε1,ε2
κ,λ as V . We have, by the rotation trick in [26]:

2V =(κ+ ε2)H(XaXb|U1aU1bQaQb)−H(XaXbY1aY1b|U1aU1bQaQb)

+ (λ+ ε1)H(XaXb|U2aU2bQaQb)− λH(XaXbY2aY2b|U2aU2bQaQb)
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=(κ+ ε2)H(X+X−|U1aU1bQaQb)−H(X+X−Y1+Y1−|U1aU1bQaQb)

+ (λ+ ε1)H(X+X−|U2aU2bQaQb)− λH(X+X−Y2+Y2−|U2aU2bQaQb)

=(κ+ ε2)H(X+|U1aU1bQaQbX−) + (κ+ ε2)H(X−|U1aU1bQaQbY1+X+)

+ (κ+ ε2)I(X−;Y1+X+|U1aU1bQaQb)

−H(X+Y1+|U1aU1bQaQbX−)−H(X−Y1−|U1aU1bQaQbY1+X+)

− I(X−;X+Y1+|U1aU1bQaQb)

+ (λ+ ε1)H(X+|U2aU2bQaQbX−) + (λ+ ε1)H(X−|U2aU2bQaQbY2+X+)

+ (λ+ ε1)I(X−;Y2+X+|U2aU2bQaQb)

− λH(X+Y2+|U2aU2bQaQbX−)− λH(X−Y2−|U2aU2bQaQbY2+X+)

− λI(X−;X+Y2+|U2aU2bQaQb)

=(κ+ ε2)H(X+|U1aU1bQaQbX−)−H(X+Y1+|U1aU1bQaQbX−)

+ (λ+ ε1)H(X+|U2aU2bQaQbX−)− λH(X+Y2+|U2aU2bQaQbX−)

+ λH(X−|U1aU1bQaQbY1+X+)−H(X−Y1−|U1aU1bQaQbY1+X+)

+ (λ+ ε1)H(X−|U2aU2bQaQbY2+X+)− λH(X−Y2−|U2aU2bQaQbY2+X+)

+ (κ+ ε2 − 1)I(X−;Y1+X+|U1aU1bQaQb) + ε1I(X−;Y2+X+|U2aU2bQaQb)

Set Q0 to be uniform binary random variable with support {0, 1}:

when Q0 = 0 we set Q̂ = (Q0, Qa, Qb, X−), Û1 = (U1aU1b), Û2 = (U2aU2b),

X̂ = X+, Ŷ1 = Y1+ and Ŷ2 = Y2+;

when Q0 = 1 we set Q̂ = (Q0, Qa, Qb, X+), Û1 = (U1aU1bY1+), Û2 =

(U2aU2bY2+), X̂ = X−, Ŷ1 = Y1− and Ŷ2 = Y2−.

In this way we construct a new joint distribution p̂Q̂Û1Û2X̂Ŷ1Ŷ2
. Observe that

since pXaY1aY2a and pXbY1bY2b are i.i.d jointly Gaussian random variables, so are

pX+Y1+Y2+ and pX−Y1−Y2− . Thus p̂X̂Ŷ1Ŷ2 follows the same distribution as pXY1Y2 .

One could verify that this construction p̂Q̂Û1Û2X̂Ŷ1Ŷ2
is a candidate satisfying

constraints 3.7:

I(X̂; Û1Û2|Q̂)

=
1

2
I(X+;U1aU1bU2aU2b|QaQbX−) +

1

2
I(X−;U1aU1bU2aU2bY1+Y2+|QaQbX+)

≥1

2
H(X+X−|QaQb)−

1

2
H(X+X−|U1aU1bU2aU2bQaQb)

=
1

2
[H(XaXb|QaQb)−H(XaXb|U1aU1bU2aU2bQaQb)]
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≥1

2
log

P

D

Û1 ← Q̂Ŷ1 ← Q̂X̂ → Q̂Ŷ2 → Û2

Q̂ ⊥ X̂Ŷ1Ŷ2

This implies that this joint distribution p̂Q̂Û1Û2|X̂Ŷ1Ŷ2 constructed above is a

feasible choice for the optimization problem infpU1|QY1pU2|QY2pQ
Θε1,ε2
κ,λ . So we build

the following inequality

V =(κ+ ε2)H(X̂|Û1Q̂)−H(X̂Ŷ1|Û1Q̂) + (λ+ ε1)H(X̂|Û2Q̂)− λH(X̂Ŷ2|Û2Q̂)

+
κ+ ε2 − 1

2
I(X−;Y1+X+|U1aU1bQaQb) +

ε1

2
I(X−;Y2+X+|U2aU2bQaQb)

≥V +
κ+ ε2 − 1

2
I(X−;Y1+X+|U1aU1bQaQb) +

ε1

2
I(X−;Y2+X+|U2aU2bQaQb)

(3.11)

Thus, the term I(X−;Y1+X+|U1aU1bQaQb) in the right-hand side (3.11) will

be forced to be 0 due to κ+ ε2 > 1. It implies that given any value assignments

of U1aU1bQaQb, X+ is independent of X−. In the following we will argue that this

implies given any value assignments of U1aU1bQaQb, Y1+ is independent of Y1−.

Notice that Y1 = X + Z1, one can compute the linear MMSE estimate of X

given Y1, Y2 (see [21] Appendix B Minimum mean square error estimation), which

will gives

X =
P

P +N1

Y1 +G

where G ∼ N(0, PN1

P+N1
) and is independent of Y1.

From the constraints 3.7, we have the Markov chain U1 ← QY1 ← X and

I(Q;XY1Y2) = 0, which leads to I(QU1;X|Y1) = 0, i.e., QU1 → Y1 → X. In

other words, we have QU1 → Y1 → G.

Thus, we know G is independent of QU1Y1. So for the two letter copies of

the minimizer, we have G1a and G1b are both Gaussians, G1a ⊥ G1b and they are

independent of Qa, Qb, U1a, U1b, Y1a, Y1b.

For the rotated version, we could write

X+ =
P

P +N1

Y1+ +G+

X− =
P

P +N1

Y1− +G−
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where G+ and G− are both Gaussians, G+ ⊥ G− and they are independent of

Qa, Qb, U1a, U1b, Y1a, Y1b.

So we could apply the Proposition 2 in [26]. Treat Y1+ and Y1− as the ”channel

input”, and treat X+ and X− as the ”channel output”, one can conclude that

given any value assignments of U1aU1bQaQb, Y1+ is independent of Y1−.

By applying Corollary 3 in [26], this implies that at the minimizing distribution

p∗U1|QY1p
∗
U2|QY2p

∗
Q, conditioned on U1Q, Y1 is Gaussian and that the conditional

variance is invariant over choices of U1Q.

Similarly, ε1 > 0 will force I(X−;Y2+X+|2aU2bQaQb) = 0, similarly we could

argue that the minimizing distribution p∗U1|QY1p
∗
U2|QY2p

∗
Q satisfies that conditioned

on U2Q, Y2 is Gaussian and the conditional covariance is independent of U2Q.

So the minimizing distribution p∗U1|QY1p
∗
U2|QY2p

∗
Q satisfies that:

Y1 − E[Y1|U1Q] ∼ N(0, K1), where K1 > 0, K1 ⊥ U1Q

Y2 − E[Y2|U2Q] ∼ N(0, K2), where K2 > 0, K2 ⊥ U2Q
(3.12)

Denote U †1 := E[Y1|U1Q], U †2 := E[Y2|U2Q]. We can show that the minimizing

value of Θε1,ε2
κ,λ is attained by p∗

U†1U
†
2 |XY1Y2Q

p∗Q, which also satisfies the constraints

(3.7) by Lemma 3.6, and thereby can be rewritten in the form of p∗
U†1 |QY1

p∗
U†2 |QY2

p∗Q.

The proof is natural but messy, so we put it in the appendix of this chapter.

Conditioned on Q, notice that Y1 ∼ N(0, P + N1) and Y1 − U †1 ∼ N(0, K1),

so U †1 ∼ N(0, P + N1 − K1). On the other hand, Y1 − U †1 , U
†
1 are independent,

thus Y1−U †1 , U
†
1 are jointly Gaussian with mean zeros, so are Y1 and U †1 . What’s

more, the covariance matrix of Y1, U
†
1 are

P +N1 −K1 P +N1 −K1

P +N1 −K1 P +N1

 and

independent of Q. Similarly, one could argue that U †2 and Y2 are jointly Gaussian

with mean zeros, and covariance matrix independent of Q.

Since conditioned on Q we have the Markov chain U †1 ← Y1 ← X → Y2 → U †2

, and pXY1Y2|Q, pY1U†1 |Q
, and pY2U†2 |Q

are all joint Gaussian distributions with mean

zeros and covariance matrices independent of Q. Thus at the minimizing distri-

bution p∗
U†1 |QY1

p∗
U†2 |QY2

p∗Q, U †1 , U
†
2 , Y1, Y2, X are jointly Gaussian and independent

of Q. So to attain the minimizing value of Θε1,ε2
κ,λ , Q could be set to constant.

Since scaling U †1 , U
†
2 doesn’t affect the functional Θε1,ε2

κ,λ and the constraint, we

could choose U1 = Y1 + Ũ1, Ũ1 ⊥ Y1, Ũ1 ∼ N(0, Ñ1), U2 = Y2 + Ũ2, Ũ2 ⊥ Y2, Ũ2 ∼

N(0, Ñ2), as long as constraints 3.9 are satisfied.
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3.4 Alternate Proof to Quadratic Gaussian Distributed

Source Coding

Encoder 1: f
(n)
1

Encoder 2: f
(n)
2

Decoder: g(n)

(Ŷ n
1 , D1)

(Ŷ n
2 , D2)

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Y n
1

Y n
2

Figure 3.4: Quadratic Gaussian Distributed Source Coding

THe quadratic Gaussian distributed source coding was studied by Oohama

in [49]. The setting for quadratic Gaussian distributed source coding is depicted

in Figure 3.4: Let (Y1, Y2) be a 2-DMS generating i.i.d. sequences of random

variables (Y1i, Y2i) ∼ N

~0,
1 ρ

ρ 1

. The encoder 1 observes Y n
1 and maps it to

M1 ∈ [1 : 2nR1) by encoding function f
(n)
1 , the encoder 2 observes Y n

2 and maps

it to M2 ∈ [1 : 2nR2) by encoding function f
(n)
2 . The decoder use some decoding

function g(n) to construct some Ŷ n
1 and Ŷ n

2 from (M1,M2).

Similar to the communication problems in introduction chapter, one could

define a (n,R1, R2) code C := (f
(n)
1 , f

(n)
2 , g(n)) for Quadratic Guassian CEO dis-

tributed source coding. A rate-distortion triple (R1, R2, D1, D2) is said to be

achievable if there exists a sequence of codes Cn such that

lim sup
n→∞

E

[
1

n

n∑
i=1

(
Y1i − Ŷ1i

)2
]
≤ D1

lim sup
n→∞

E

[
1

n

n∑
i=1

(
Y2i − Ŷ2i

)2
]
≤ D2

And the rate-distortion region RQDS(D1, D2) is defined as the closure of the set

of all achievable rate pairs (R1, R2) such that (R1, R2, D1, D2) is achievable.

Observe that when ρ = 0, Y n
1 ⊥ Y n

2 , the problem will be reduced to two

separate lossy source coding on two independent Gaussian sources. When ρ = 1,

Y n
1 = Y n

2 , the problem is reduced to one lossy source coding on one Gaussian
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source. So the interesting case is that 1 > ρ > 0, since if ρ < 0, we could flip Y n
1

to −Y n
1 and do the compression.

Besides, by symmetry of Y1, Y2, one could assume that D1 ≤ D2, and we can

assume that D1 ≤ 1. Since if D1 ≥ 1, D2 ≥ 1, one could pick 0 for Ŷ1 and Ŷ2.

Wagner, Tavildar, and Viswanath in [62] proved the following single-letter

characterization of RQDS(D1, D2):

Theorem 3.8. Consider the quadratic Gaussian distributed source coding on

2-DMS (Y1, Y2) satisfying that pY1Y2 ∼ N

~0,
1 ρ

ρ 1

, the rate-distortion

RQDS(D1, D1) is the set of rate pairs (R1, R2) such that

R1 ≥
1

2
log+

1− ρ2 + ρ22−2R2

D1

R2 ≥
1

2
log+

1− ρ2 + ρ22−2R1

D2

R1 +R2 ≥
1

2
log+

1− ρ2 +
√

(1− ρ2)2 + 4ρ2D1D2

2D1D2

The achievablity of above RQDS(D1, D2) can be proven by using the Berger-

Tung coding scheme, see Berger [9], Tung [57], and [51]. One can check chapter

12 in [21] for details. And the converse proof is mainly by using auxiliary random

variable X such that Y1 → X → Y2 and results from estimation theory, see [21].

We will express RQDS(D1, D2) in terms of the weighted sum rates, and then

present an alternate proof for the converse of the weighted sum rates in a similar

way as the previous section. Still we need to use the idea of matching two

lower bounds and auxiliary random variable X = 1√
D1
Y1 + 1√

D2
Y2 + Z where

Z ∼ N(0, 1−ρ2
ρ
√
D1D2

), Z ⊥ (Y1, Y2) such that Y1 ← X → Y2.

Similar as before, one should notice that the weighted sum rate lower bound

derived here is in a similar spirit as the improved lower bound for multiterminal

source coding in [61], in terms of the identification of auxiliary random variables.

However, to the best knowledge of the authors, applying rotation techinques to

the evaluation of these lower bounds should be new.

Theorem 3.9. For 0 < ρ < 1, D1 ≤ D2, D1 ≤ 1, and λ ≥ 1, any rate pairs

(R1, R2) in RQDS(D1, D2) must satisfy that

λR1 +R2 ≥ min
x≥0

x+
λ

2
log+

1− ρ2 + ρ22−2x

D1

(3.13)
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R1 + λR2 ≥ min
x≥0

x+
λ

2
log+

1− ρ2 + ρ22−2x

D2

(3.14)

R1 +R2 ≥
1

2
log+

1− ρ2 +
√

(1− ρ2)2 + 4ρ2D1D2

2D1D2

(3.15)

3.4.1 Weighted Sum Rate Lower Bound

Similarly, we could derive the following weighted sum rate lower bounds for a

generalized distributed source coding depicted in Figure 3.5:

Xn

Channel 1: W1

Channel 2: W2

Y n1

Y n2

Encoder 1: f
(n)
1

Encoder 2: f
(n)
2

Decoder: g(n)Xn

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

(Ŷ n
1 , D1)

(Ŷ n
2 , D2)

Figure 3.5: Generalized Distributed Source Coding

Theorem 3.10. Consider the generalized quadratic distributed source coding on

2-DMS (Y1, Y2), assume there exists some auxiliary source X such that Y1 and

Y2 are obtained by passing X through some discrete memoryless channel W1 and

W2 respectively. The distortion criterion is given by

lim sup
n→∞

E

(
1

n

n∑
i=1

d(Y1i, Ŷ1i)

)
≤ D1;

lim sup
n→∞

E

(
1

n

n∑
i=1

d(Y2i, Ŷ2i)

)
≤ D2.

For any λ ≥ 1, any achievable rate-distortion triple (R1, R2, D1, D2) must

satisfy that

R1 + λR2 ≥H(XY1) + λH(Y2|X)−H(X|Ŷ1Ŷ2Q)

+ (λ− 1) max
{
H(X|U1QW )−H(X|Ŷ1Ŷ2Q), 0

}
+H(X|U1QW )−H(XY1|U1QW ) + λH(X|U2QW )− λH(XY2|U2QW )

R2 + λR1 ≥H(XY2) + λH(Y1|X)−H(X|Ŷ1Ŷ2Q)

+ (λ− 1) max
{
H(X|U2QW )−H(X|Ŷ1Ŷ2Q), 0

}
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+H(X|U2QW )−H(XY2|U2QW ) + λH(X|U1QW )− λH(XY1|U1QW )

subject to the constraint

U1 ← QWY1 ← QWX → QWY2 → U2

QW ⊥ XY1Y2

Ŷ1Ŷ2 ← QWU1U2 → XY1Y2

E[d(Y1, Ŷ1)] ≤ D1,E[d(Y2, Ŷ2)] ≤ D2

(3.16)

.

Proof. The proof of this theorem is essentially the same as the proof to Theo-

rem 3.7 with the same auxiliary random variable identifications, i.e., Q = i,Wi =

Xn/i, U1i = M1Y
i−1

1 , U2i = M2Y
i−1

2 . The term 1
n
H(Xn|M1M2) is single-letterized

in the following way:

H(Xn|M1M2) = H(Xn|Ŷ n
1 Ŷ

n
2 M1M2) ≤

n∑
i=1

H(Xi|Ŷ1iŶ2i).

3.4.2 Optimality of Achievable Weighted Sum Rate

In this section, we will use the weighted sum rates lower bounds in Theorem 3.10

to prove the converse of weighted sum rate in quadratic Gaussian distributed

source coding, Theorem 3.9.

Proof. To show any (R1, R2) ∈ RQDS(D1, D2) satisfy inequality (3.13). In Theo-

rem 3.10, pick X = Y2 for R1 + λR2, we have

R1 + λR2 ≥H(Y1Y2) + λH(Y2|Y2)−H(Y2|Ŷ1Ŷ2Q)

+ (λ− 1) max{H(Y2|U1QW )−H(Y2|Ŷ1Ŷ2Q), 0}

+H(Y2|U1QW )−H(Y2Y1|U1QW ) + λH(Y2|U2QW )− λH(Y2|U2QW )

subject to the constraints (3.16).

Here we could bound H(Y2|Ŷ1Ŷ2Q) in a similar way as before

H(Y2|Ŷ1Ŷ2Q) ≤ H(Y2 − Ŷ2|Q) ≤ 1

2
log 2πeD2.

Write Q = QW , above weighted sum rate lower bound can be relaxed to

R1 + λR2 ≥H(Y1Y2)− 1

2
log 2πeD2 + (λ− 1) max{H(Y2|U1Q)− 1

2
log 2πeD2, 0}
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+H(Y2|U1Q)−H(Y1Y2|U1Q)

subject to the constraints

U1 ← QY1 → Y2

Q ⊥ Y1Y2

(3.17)

Here we drop the constraints involving Ŷ1 and Ŷ2 in constraints (3.16).

From the constraints (3.17), pU1Q|Y1Y2 can be written in the form of pU1|QY1pQ.

Thus we have:

R1 + λR2 ≥ inf
pU1|QY1pQ

1

2
log 2πe

1− ρ2

D2

+ (λ− 1) max{H(Y2|U1Q)− 1

2
log 2πeD2, 0}

+H(Y2|U1Q)−H(Y1Y2|U1Q)

= inf
pU1|QY1pQ

1

2
log 2πe

1− ρ2

D2

+ (λ− 1) max
α∈[0,1]

α

[
H(Y2|U1Q)− 1

2
log 2πeD2

]
+H(Y2|U1Q)−H(Y1Y2|U1Q)

(a)
= max

α∈[0,1]

1

2
log 2πe

1− ρ2

D2

− (λ− 1)α

2
log 2πeD2

+ inf
pU1|QY1pQ

((λ− 1)α + 1)H(Y2|U1Q)−H(Y1Y2|U1Q)

(b)
= max

α∈[0,1]

1

2
log 2πe

1− ρ2

D2

− (λ− 1)α

2
log 2πeD2

+ inf
pU1Q|Y1

((λ− 1)α + 1)H(Y2|U1Q)−H(Y1Y2|U1Q)

(c)
= max

α∈[0,1]

1

2
log 2πe

1− ρ2

D2

− (λ− 1)α

2
log 2πeD2

+ inf
pU1|Y1

((λ− 1)α + 1)H(Y2|U1)−H(Y1Y2|U1)

Step (a) follows from the inf max exchange via Theorem 5 in Appendix of [24].

Step (b) is due to Q ⊥ Y1Y2, so pU1|QY1pQ = pU1|QY1pQ|Y1 = pU1Q|Y1 . Step (c) is

from replacing U1Q with U1.

Thus we needs to compute for κ ≥ 1

inf
pU1|Y1

κH(Y2|U1)−H(Y1Y2|U1)

By Lemma 3.7, above value is attained by U1 = Y1 + Ũ1, Ũ1 ∼ N(0, Ñ1), Ũ1 ⊥

Y1. So the weighted sum rate can be explicitly written as

R1 + λR2 ≥ max
α∈[0,1]

1

2
log 2πe

1− ρ2

D2

− (λ− 1)α

2
log 2πeD2
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+ min
Ñ1≥0

(λ− 1)α + 1

2
log 2πe

1 + Ñ1 − ρ2

1 + Ñ1

− 1

2
log(2πe)2 (1− ρ2)Ñ1

1 + Ñ1

= max
α∈[0,1]

min
Ñ1>0
−1

2
log

Ñ1

1 + Ñ1

+
(λ− 1)α + 1

2
log

1 + Ñ1 − ρ2

D2(1 + Ñ1)

On the other hand, we have R1 + λR2 ≥ 0, thus we know that

R1 + λR2 ≥max

{
0, max

α∈[0,1]
min
Ñ1>0
−1

2
log

Ñ1

1 + Ñ1

+
(λ− 1)α + 1

2
log

1 + Ñ1 − ρ2

D2(1 + Ñ1)

}
(a)

≥ min
Ñ1>0
−1

2
log

Ñ1

1 + Ñ1

+
λ

2
log+

1 + Ñ1 − ρ2

D2(1 + Ñ1)

Step (a) follows from Lemma 3.8.

Reparamterize x = −1
2

log Ñ1

1+Ñ1
, so we will get back to the first weighted sum

rate (3.13).

To show any (R1, R2) ∈ RQDS(D1, D2) satisfy inequality (3.14). In Theo-

rem 3.10, pick X = Y1 for R2 +λR1, we could show the second weighed sum rate

(3.14) similarly.

To prove the converse for the third sum rate lower bound (3.15). The main

framework of proof is still the same as the converse proof in Chapter 12 of book

[21]: we need to derive the Cooperative lower bound, and another lower bound

from an auxiliary random variable X, which is slightly different from the µ-Sum

lower bound in the book. Then taking the minmax of the two lower bounds will

give the third sum rate lower bound (3.15).

In Theorem 3.10, for the constraints (3.16), given the distortion measure

d(x, x̂) = (x − x̂)2 in quadratic Gaussian distributed source coding, we could

introduce some θ ∈ [−1, 1] such that: E

[(
Y1 − Ŷ1

)2
]

E
[(
Y1 − Ŷ1

)(
Y2 − Ŷ2

)]
E
[(
Y1 − Ŷ1

)(
Y2 − Ŷ2

)]
E

[(
Y2 − Ŷ2

)2
]

 �
 D1 θ

√
D1D2

θ
√
D1D2 D2


(3.18)

Let λ = 1, first pick X = (Y1, Y2) for R1 +R2 in Theorem 3.10, we will obtain

R1 +R2 ≥H(Y1Y2)−H(Y1Y2|Ŷ1Ŷ2Q)

=H(Y1Y2)−H(Y1 − Ŷ1, Y2 − Ŷ2|Ŷ1Ŷ2Q)

≥H(Y1Y2)−H(Y1 − Ŷ1, Y2 − Ŷ2|Q)

≥1

2
log

1− ρ2

D1D2(1− θ2)
, (3.19)
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which recovers the Cooperative lower bound in Chapter 12 of [21].

On the other hand, in Theorem 3.10, fix λ = 1 and X = 1√
D1
Y1 + 1√

D2
Y2 + Z

where Z ∼ N(0, 1−ρ2
ρ
√
D1D2

), Z ⊥ (Y1, Y2). One can verify Y1 ← X ← Y2.

For convenience of writing, denote µ1 = 1√
D1
, µ2 = 1√

D2
, N = 1−ρ2

ρ
√
D1D2

.

Notice that the covariance distortion constraint (3.18) gives a bound on

H(X|Ŷ1Ŷ2Q)

H(X|Ŷ1Ŷ2Q) =H(X − µ1Ŷ1 − µ2Ŷ2|Ŷ1Ŷ2Q)

≤H
(
µ1(Y1 − Ŷ1) + µ2(Y2 − Ŷ2) + Z

)
≤1

2
log(2πe) (2 + 2θ +N)

Besides, the constraints (3.16) could be relaxed to

U1 ← QWY1 ← QWX → QWY2 → U2

QW ⊥ XY1Y2

H(Y1|U1U2QW ) ≤ 1

2
log 2πeD1

H(Y2|U1U2QW ) ≤ 1

2
log 2πeD2

where the last two equations come from

H(Y1|U1U2QW ) ≤ H(Y1|Ŷ1Ŷ2Q) ≤ H(Y1 − Ŷ1) ≤ 1

2
log 2πeD1

H(Y2|U1U2QW ) ≤ H(Y2|Ŷ1Ŷ2Q) ≤ H(Y2 − Ŷ2) ≤ 1

2
log 2πeD2

Similar to the proof in quadratic Gaussian CEO problem, write Q = QW , we

will get the following lower bounds for weighted sum rates:

R1 +R2 ≥
1

2
log(2πe)3(1− ρ2)N − 1

2
log(2πe) (2 + 2θ +N)

+H(X|U1Q)−H(XY1|U1Q) +H(X|U2Q)−H(XY2|U2Q)

subject to the constraints:

U1 ← QY1 ← QX → QY2 → U2

Q ⊥ XY1Y2

H(Y1|U1U2Q) ≤ 1

2
log 2πeD1

H(Y2|U1U2Q) ≤ 1

2
log 2πeD2

(3.20)
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Notice the constraint (3.20) implies that pU1U2Q|Y1Y2X can be written in the

form of pU1|Y1QpU2|Y2QpQ. So we get

R1 +R2 ≥
1

2
log(2πe)3(1− ρ2)N − 1

2
log(2πe) (2 + 2θ +N)

+ inf
pU1|Y1QpU2|Y2QpQ

H(X|U1Q)−H(XY1|U1Q) +H(X|U2Q)−H(XY2|U2Q)

where pU1|Y1QpU2|Y2QpQ needs to satisfy

H(Y1|U1U2Q) ≤ 1

2
log 2πeD1

H(Y2|U1U2Q) ≤ 1

2
log 2πeD2

(3.21)

Similar to the proof to Lemma 3.4, one could show that given X, Y1, Y2 jointly

Gaussians and Y1 → X → Y2, for λ ≥ 1, the minimizer of

inf
pU1|Y1QpU2|Y2QpQ

H(X|U1Q)−H(XY1|U1Q) +H(X|U2Q)−H(XY2|U2Q)

subject to the constraints (3.20), is attained by Q = ∅ and U1 = Y1 + Ũ1, Ũ1 ⊥

Y1, Ũ1 ⊥ N(0, N1), U2 = Y2 + Ũ2, Ũ2 ⊥ Y2, Ũ2 ⊥ N(0, N2) subject to:

H(Y1|U1U2) ≤ 1

2
log 2πeD1

H(Y2|U1U2) ≤ 1

2
log 2πeD2

(3.22)

From X = µ1Y1 + µ2Y2 +N and pY1Y2 ∼ N

~0,
1 ρ

ρ 1

, we could write:

Y1 =
µ1 + µ2ρ

µ2
1 + µ2

2 + 2µ1µ2ρ+N
X +

√
µ2

2(1− ρ2) +N

µ2
1 + µ2

2 + 2µ1µ2ρ+N
G1

Y2 =
µ2 + µ1ρ

µ2
1 + µ2

2 + 2µ1µ2ρ+N
X +

√
µ2

1(1− ρ2) +N

µ2
1 + µ2

2 + 2µ1µ2ρ+N
G1

where G1 ∼ N(0, 1), G1 ⊥ (X,G2), G2 ∼ N(0, 1), G2 ⊥ (X,G1).

For convenience of writing, denote

px =µ2
1 + µ2

2 + 2µ1µ2ρ+N

A1 =µ2
2(1− ρ2) +N

A2 =µ2
1(1− ρ2) +N

Then the sum rate lower bound becomes:

R1 +R2 ≥
1

2
log(2πe)3(1− ρ2)N − 1

2
log 2πe (2 + 2θ +N)
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+ min
N1,N2≥0

1

2
log(2πe)(

A1

px
+N1)− 1

2
log(2πe)2N1

A1

px

+
1

2
log(2πe)(

A2

px
+N2)− 1

2
log(2πe)2N2

A2

px

=
1

2
log

(1− ρ2)N

(2 + 2θ +N)
+ min

N1,N2≥0

1

2
log

(A1 +N1px)(A2 +N2px)

N1N2A1A2

subject to the constraints:

N1(1 +N2 − ρ2)

(1 +N1)(1 +N2)− ρ2
≤ D1

N2(1 +N1 − ρ2)

(1 +N1)(1 +N2)− ρ2
≤ D2

(3.23)

By Lemma 3.9, the above sum rate lower bound becomes

R1 +R2 ≥
1

2
log

(1− ρ2)N

2(1 + θ) +N

(
ρ

1− ρ2
+

1

2
µ1µ2 +

1

2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2

)2

(3.24)

Denote the right-hand side of above lower bound (3.24) as S1(θ).

Notice that the Cooperative lower bound (3.19) can be written in terms of

µ1, µ2:

R1 +R2 ≥
1

2
log

(1− ρ2)µ2
1µ

2
2

1− θ2
(3.25)

Denote the right-hand side of the lower bound (3.25) as S2(θ).

Observe that S1(θ) is decreasing on θ ∈ [−1, 1] and S2(θ) is first decreasing

and then increasing on θ ∈ [−1, 1]. And by Lemma 3.10 there are two roots

θ1 < θ2 =

√
4ρ2+µ21µ

2
2(1−ρ2)2−µ1µ2(1−ρ2)

2ρ
and θ2 ∈ (0, 1] such that S1(θ) = S2(θ).

So we have

R1 +R2 ≥ min
θ∈[−1,1]

max{S1(θ), S2(θ)} = S2(θ2)

which will lead to the sum rate lower bound (3.15).

3.5 Discussion and Conclusion

In this chapter we established that linear coding strategy of Körner and Marton

[33] yields the optimal sum-rate for pairs of distributions outside the doubly

symmetric binary source. This was shown by developing a lower bound and
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identifying sufficient conditions when the lower bound is tight. The ideas and

results are applicable to larger fields as well.

Via using the idea in deriving weighted sum rate lower bounds for Körner

and Marton’s modulo two sum problem, we could derive similar weighted sum

rate lower bounds for quadratic Gaussian CEO problem and quadratic Gaussian

distributed source coding, and thereby provide alternate proofs for the optimality

of Berger-Tung coding scheme in these two settings.

3.A Quadratic Gaussian CEO

Lemma 3.6. Given the minimizing distribution p∗U1|QY1p
∗
U2|QY2p

∗
Q for Θε1,ε2

κ,λ satis-

fying the two properties (3.12), denote U †1 := E[Y1|U1Q], U †2 := E[Y2|U2Q], then

p∗
U†1U

†
2 |XY1Y2Q

p∗Q satisfies the constraints (3.7) and also attain the minimizing value

of Θε1,ε2
κ,λ .

Proof. First we will prove some Markov structures on the joint distribution

Q,U1, U2, U
†
1 , U

†
2 , X, Y1, Y2, which will be useful in the following proof.

From the two properties (3.12) of the minimizing distribution p∗U1U2|QXY1Y2p
∗
Q,

we could write Y1 = U †1 + V1 where V1 ∼ N(0, K1), V1 ⊥ U1Q and Y2 = U †2 + V2

where V2 ∼ N(0, K2), V2 ⊥ U2Q.

Since V1 ⊥ U1Q, Y1 ⊥ Q, so U †1 = Y1−V1 ⊥ Q, U †1 is a function of U1; similarly

one could argue that U †2 is a function of U2.

The conditions that Y1 = U †1 + V1 where V1 ∼ N(0, K1), V1 ⊥ U1Q and

Y2 = U †2 + V2 where V2 ∼ N(0, K2), V2 ⊥ U2Q also give the following Markov

chain

Y1 → U †1Q→ U1 (3.26)

Y2 → U †2Q→ U2 (3.27)

With these two Markov chains, the Markov chain U1 ← QY1 ← XQ → QY2 →

U2, and U †1 is a function of U1 and U †2 is a function of U2, one can verify the

following long Markov chain:

U1 ← QU †1 ← QY1 ← QX → QY2 → QU †2 → U2 (3.28)

The verification is as following:
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1. U1 ← QU †1 ← QY1 follows from Markov chain (3.26);

2. U1QU
†
1 ← QY1 ← QX follows from U †1 is a function of U1 and U1 ← QY1 ←

X;

3. U1QU
†
1Y1 ← QX ← QY2 follows from U †1 is a function of U1 and U1Y1 ←

QX ← Y2;

4. U1QU
†
1Y1X ← QY2 ← QU †2 follows from U1Y1X ← QY2 ← U2 and U †1 is a

function of U1 and U †2 is a function of U2;

5. U1QU
†
1Y1XY2 ← QU †2 ← U2 follows from U †1U1Y1X ← QY2 ← U2U

†
2 and

the Markov chain (3.27).

First we will use this long Markov chain to verify that p∗
U†1U

†
2 |XY1Y2Q

p∗Q satisfies

the constraints (3.7).

• p∗U1U2|QXY1Y2p
∗
Q satisfies the Markov chain in the constraints (3.7).

U †1 ← QY1 ← QX → QY2 → U †2 ,

which is implied by the long Markov chain (3.28).

• Observe that

H(X|U †1U
†
2Q)

(a)

≤H(X|U1U2Q)

(b)

≤1

2
log 2πeD

Inequality (a) follows from the markov chain U1U2Q← U †1U
†
2Q← X, which

is implied by the long Markov chain (3.28). Inequality (c) follows from that

p∗U1U2|QXY1Y2p
∗
Q satisfies H(X|U1U2Q) ≥ 1

2
log P

D
.

• Q ⊥ XY1Y2 is satisfied since the joint distribution of U †1 , U
†
2 , X, Y1, Y2 is

given by pXY1Y2p
∗
U†1U

†
2 |XY1Y2Q

p∗Q.

Second we will show that the minimizing value of Θε1,ε2
κ,λ is attained by this

p∗
U†1U

†
2 |QXY1Y2

p∗Q.

Observe that

H(X|U1Q)
(a)
= H(X|U1QU

†
1)

(b)
= H(X|U †1Q)

H(XY1|U1Q)
(a)
= H(XY1|U1QU

†
1)

(c)
= H(XY1|U †1Q)

(3.29)
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Equality (a) follows from the fact that U †1 is a function U1; Equality (b) is due

to the Markov chain U1 ← U †1Q ← X implied by the long Markov chain (3.28);

Equality (c) is due to the markov chain U1 ← U †1Q ← XY1, which also follows

from the long Markov chain (3.28).

Similarly one could argue that

H(X|U2Q) = H(X|U2QU
†
2) = H(X|U †2Q)

H(XY2|U2Q) = H(XY2|U2QU
†
2) = H(XY2|U †2Q)

(3.30)

With these equalities (3.29) and (3.30), we have

(κ+ ε2)H(X|U1U2Q)−H(XY1|U1Q) + (λ+ ε1)H(X|U2Q)− λH(XY2|U2Q)

=(κ+ ε2)H(X|U †1U
†
2Q)−H(XY1|U †1Q) + (λ+ ε1)H(X|U †2Q)− λH(XY2|U †2Q)

This proves that the minimizing value of Θε1,ε2
κ,λ is attained by this

p∗
U†1U

†
2 |QXY1Y2

p∗Q.

3.B Quadratic Gaussian Distributed Source Coding

Lemma 3.7. Given pY1Y2 ∼ N

~0,
1 ρ

ρ 1

, for any κ ≥ 1,

inf
pU1|Y1

κH(Y2|U1)−H(Y1Y2|U1)

is attained by U1 = Y1 + Ũ1, Ũ1 ∼ N(0, Ñ1), Ũ1 ⊥ Y1.

Proof. This proof is similar to the proof to Lemma 3.4. Consider the following

perturbed optimization problem:

Given pY1Y2 ∼ N

~0,
1 ρ

ρ 1

, for any ε > 0, κ ≥ 1, want to find the infimum

of the following function:

Γεκ(pU1|Y1) := (κ+ ε)H(Y2|U1)−H(Y1Y2|U1)

Since scaling U1 doesn’t affect Γεκ, one could truncate U1 to some random

variable with support on [0, 1]. This will give tightness of the joint distribution

PY1U1U2 . By routine arguments in Appendix II of [26] one can show that there is

a minimizer from the tightness of the sequence of distributions.
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So we assume that infimum of Γεκ(pU1|Y1) is attained by some minimizing dis-

tribution p∗U1|Y1 , and write the joint distribution of U1, Y1, Y2 by p∗U1|Y1pY1Y2 . Take

two i.i.d. copies of the joint distribution at the minimizer and denote them using

subscripts a, b respectively. Let (·)+ = (·)a+(·)b√
2

and (·)− = (·)a−(·)b√
2

, where (·) can

be replaced with Y1, Y2.

Denote minimum of Γεκ as V . Now we have, by the rotation trick in [26]:

2V =(κ+ ε)H(Y2aY2b|U1aU1b)−H(Y1aY1bY2aY2b|U1aU1b)

=(κ+ ε)H(Y2+Y2−|U1aU1b)−H(Y1+Y1−Y2+Y2−|U1aU1b)

=(κ+ ε)H(Y2+|U1aU1bY1−Y2−) + (κ+ ε)H(Y2−|U1aU1bY2+) + (κ+ ε)I(Y2+;Y1−Y2−|U1aU1b)

−H(Y1+Y2+|U1aU1bY1−Y2−)−H(Y1−Y2−|U1aU1bY2+)− I(Y2+;Y1−Y2−|U1aU1b)

=(κ+ ε)H(Y2+|U1aU1bY1−Y2−)−H(Y1+Y2+|U1aU1bY1−Y2−)

+ (κ+ ε)H(Y2−|U1aU1bY2+)−H(Y1−Y2−|U1aU1bY2+)

+ (κ+ ε− 1)I(Y2+;Y1−Y2−|U1aU1b)

(a)
=Γεκ(pU1aU1bY1−Y2−|Y1+) + Γεκ(pU1aU1bY2+|Y1−) + (κ+ ε− 1)I(Y2+;Y1−Y2−|U1aU1b)

≥2V + (κ+ ε− 1)I(Y2+;Y1−Y2−|U1aU1b)

Observe that since pY1aY2a and pY1bY2b are i.i.d. Gaussians, so are pY1+Y2+ and

pY1−Y2− . Besides, U1aU1b → Y1−Y1+ → Y2−Y2+ and Y1−Y2− ⊥ Y1+Y2+ implies that

Y1−Y2−U1aU1b → Y1+ → Y2+ and Y1+Y2+U1aU1b → Y1− → Y2−. Thus we have

step (a).

Therefore, κ+ ε− 1 > 0 will force I(Y2+;Y1−Y2−|U1aU1b) = 0. It implies that

given any value assignments of U1aU1b, Y2+ ⊥ Y2−. Observe that for the two i.i.d.

copies of the joint distribution at the minimizer, we could have

Y2a = ρY1a +
√

1− ρ2Ga, Ga ∼ N(0, 1), Ga ⊥ U1aY1a

Y2b = ρY1b +
√

1− ρ2Gb, Gb ∼ N(0, 1), Gb ⊥ U1bY1b

Thus for the rotated version,

Y2+ = ρY1+ +
√

1− ρ2G+, G+ ∼ N(0, 1), G+ ⊥ U1aU1bY1+Y1+

Y2− = ρY1− +
√

1− ρ2G−, G− ∼ N(0, 1), G− ⊥ U1aU1bY1−Y1−

Again we apply the Proposition 2 in [26], treat Y1+ and Y1− as the ”channel

input”, and treat Y2+ and Y2− as the ”channel output”. One can conclude that

given any value assignments of U1aU1bQaQb, Y1+ is independent of Y1−.
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By applying Corollary 3 in [26], we know that the minimizing distribution

p∗U1U2|QXY1Y2p
∗
Q satisfies that:

Y1 − E[Y1|U1] ∼ N(0, K1), where K1 > 0, K1 ⊥ U1 (3.31)

Denote U †1 := E[Y1|U1]. We can show that the minimizing value of Γεκ is attained

by p∗
U†1 |Y1

from the Markov chain U1 → U †1 → Y1 and U †1 is a function of U1.

Since Y1 and Y1−U †1 are both Gaussians with mean zeros and fixed variance, and

Y1 ⊥ Y1−U †1 , thus they are jointly Gaussian with mean zeros and fixed covariance

matrix, so are Y1, U
†
1 .

Observe that scaling U1 doesn’t affect Γεκ. Thus for ε > 0, κ ≥ 1, the mini-

mizing value of Γεκ is attained by U1 = Y1 + Ũ1, Ũ1 ∼ N(0, Ñ1), Ũ1 ⊥ Y1.

Notice that

Γ0
κ =Γεκ − εH(Y1|U1)

≥Γεκ − ε log 2πe

By a similar continuity argument as that in quadratic Gaussian CEO alternate

proof, one could argue that for κ ≥ 1, the minimizing value of Γ0
κ is also attained

by U1 = Y1 + Ũ1, Ũ1 ∼ N(0, Ñ1), Ũ1 ⊥ Y1.

Lemma 3.8. For D2 > 0, 0 < ρ < 1, λ ≥ 1,

max

{
0, max

α∈[0,1]
min
Ñ1>0
−1

2
log

Ñ1

1 + Ñ1

+
(λ− 1)α + 1

2
log

1 + Ñ1 − ρ2

D2(1 + Ñ1)

}

≥ min
Ñ1>0
−1

2
log

Ñ1

1 + Ñ1

+
λ

2
log+

1 + Ñ1 − ρ2

D2(1 + Ñ1)

Proof. Re-paramterize in k = Ñ1

1+Ñ1
∈ (0, 1]. We want to show that

max

{
0, max

α∈[0,1]
min
k∈(0,1]

−1

2
ln k +

(λ− 1)α + 1

2
ln

1− ρ2 + ρ2k

D2

}
≥ min

k∈(0,1]
− 1

2
ln k +

λ

2
ln+

1− ρ2 + ρ2k

D2

(3.32)

where ln+ x = max{lnx, 0}.

Denote the functions

fλ,α(k) :=− 1

2
ln k +

(λ− 1)α + 1

2
log

1− ρ2 + ρ2k

D2



80 CHAPTER 3. LOWER BOUNDS ON DISTRIBUTED SOURCE CODING

Then inequality 3.32 can be written as

max{0, max
α∈[0,1]

min
k∈(0,1]

fλ,α(k)} ≥ min
k∈(0,1]

max{−1

2
ln k, fλ,1(k)} (3.33)

The first derivative of fλ,α(k) gives that

f ′λ,α(k) =
(λ− 1)αρ2k − (1− ρ2)

2k(1− ρ2 + ρ2k)

When λ = 1, for the right-hand side of inequality (3.33), since both −1
2

ln k

and f1,1(k) decreases on k ∈ (0, 1], so max{−1
2

ln k, f1,1(k)} minimizes at k = 1,

which evaluates to max{0, 1
2

log 1
D2
}; On the other hand, for the left-hand side

of inequality (3.33), pick α = 1, f1,1(k) minimizes at k = 1, so left-hand side

becomes max{0, 1
2

ln 1
D2
}. So the inequality (3.33) holds.

When λ > 1, notice that

fλ,1(k) =− 1

2
ln k +

λ

2
ln

1− ρ2 + ρ2k

D2

f ′λ,1(k) =
(λ− 1)ρ2k − (1− ρ2)

2k(1− ρ2 + ρ2k)

• When (λ− 1)ρ2 ≤ 1− ρ2, both −1
2

ln k and fλ,1(k) decreases over k ∈ (0, 1],

so the right-hand side of inequality (3.33) has

min
k∈(0,1]

max{−1

2
ln k, fλ,1(k)} = max{0, fλ,1(1)} = max{0, 1

2
log

1

D2

};

For the left-hand side, pick α = 0, then we get max{0, 1
2

log 1
D2
}, so inequal-

ity (3.33) holds trivially;

• When (λ − 1)ρ2 > 1 − ρ2, observe that fλ,1(k) first decrease from +∞

to fλ,1( 1−ρ2
(λ−1)ρ2

) on k ∈ (0, 1−ρ2
(λ−1)ρ2

) and then increase to λ
2

ln 1
D2

on k ∈

( 1−ρ2
(λ−1)ρ2

, 1], but −1
2

ln k decreases from +∞ to 0 over k ∈ (0, 1]. And their

intersection point (root of fλ,1(k) = −1
2

ln k) either doesn’t exist or happens

at k = D2−1+ρ2

ρ2
∈ (0, 1].

If D2 ≥ 1, then −1
2

ln k ≥ fλ,1(k),∀k ∈ (0, 1]. The right-hand side of

inequality (3.33) is 0, so the inequality (3.33) holds trivially;

If D2 ≤ 1 − ρ2, then −1
2

ln k ≤ fλ,1(k),∀k ∈ (0, 1]. The right-hand side

of inequality (3.33) is fλ,1( 1−ρ2
(λ−1)ρ2

). For the left-hand side, pick α = 1, it

becomes max{0, fλ,1( 1−ρ2
(λ−1)ρ2

)}. Thus the inequality (3.33) holds;

If 0 < 1−ρ2
(λ−1)ρ2

≤ D2−1+ρ2

ρ2
< 1, then the right-hand side of inequality (3.33) is

−1
2

ln D2−1+ρ2

ρ2
. For the left-hand side, pick α = 1−ρ2

(λ−1)(D2−1+ρ2)
, then fλ,α(k)
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minimizes at k = D2−1+ρ2

ρ2
, whose value is equal to −1

2
ln D2−1+ρ2

ρ2
. So the

inequality (3.33) holds;

If 0 < D2−1+ρ2

ρ2
< 1−ρ2

(λ−1)ρ2
< 1, then the right-hand side of inequality (3.33)

is fλ,1( 1−ρ2
(λ−1)ρ2

). For the left-hand side, pick α = 1, then fλ,1(k) minimizes at

k = 1−ρ2
(λ−1)ρ2

. So the inequality (3.33) holds.

Lemma 3.9. For 1 > ρ ≥ 0, 0 < µ1 ≤ µ2, denote N = (1−ρ2)µ1µ2
ρ

and px =

µ2
1 + µ2

2 + 2µ1µ2ρ + N,A1 = µ2
2(1− ρ2) + N,A2 = µ2

1(1− ρ2) + N , the following

quantity

min
N1,N2≥0

(A1 +N1px)(A2 +N2px)

N1N2A1A2

(3.34)

subject to constraints:

N1(1 +N2 − ρ2)

(1 +N1)(1 +N2)− ρ2
≤ 1

µ2
1

N2(1 +N1 − ρ2)

(1 +N1)(1 +N2)− ρ2
≤ 1

µ2
2

(3.35)

is lower bounded by
(

ρ
1−ρ2 + 1

2
µ1µ2 + 1

2

√
µ2

1µ
2
2 + 4ρ2

(1−ρ2)2

)2

.

Proof. Reparameterize in x = 1
N1

+ 1
1−ρ2 , y = 1

N2
+ 1

1−ρ2 , then x, y ≥ 1
1−ρ2 . For the

constraints (3.35) we have:
1−ρ2
N2

+1

1−ρ2
N1N2

+ 1
N1

+ 1
N2

+1
≤ 1

µ21

1−ρ2
N1

+1

1−ρ2
N1N2

+ 1
N1

+ 1
N2

+1
≤ 1

µ22

⇔


(1−ρ2)y

(1−ρ2)(x− 1
1−ρ2

)(y− 1
1−ρ2

)+x− 1
1−ρ2

+y− 1
1−ρ2

+1
≤ 1

µ21

(1−ρ2)x

(1−ρ2)(x− 1
1−ρ2

)(y− 1
1−ρ2

)+x− 1
1−ρ2

+y− 1
1−ρ2

+1
≤ 1

µ22

⇔


(1−ρ2)y

(1−ρ2)xy− 1
1−ρ2

+1
≤ 1

µ21

(1−ρ2)x

(1−ρ2)xy− 1
1−ρ2

+1
≤ 1

µ22

⇔

xy − µ
2
1y ≥

ρ2

(1−ρ2)2

xy − µ2
2x ≥

ρ2

(1−ρ2)2

And the minimization functional can be simplified as following:

1

A1A2

[
p2
x + pxA1(x− 1

1− ρ2
) + pxA2(y − 1

1− ρ2
) + A1A2(x− 1

1− ρ2
)(y − 1

1− ρ2
)

]
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=
1

A1A2

[
p2
x − pxA1

1

1− ρ2
− pxA2

1

1− ρ2
+ pxA1x+ pxA2y + A1A2xy

−A1A2
x+ y

1− ρ2
+

A1A2

(1− ρ2)2

]
=

1

A1A2

[
px(px − A1

1

1− ρ2
− A2

1

1− ρ2
) + (px −

A2

1− ρ2
)A1x+ (px −

A1

1− ρ2
)A2y

+A1A2xy +
A1A2

(1− ρ2)2

]
=

1

A1A2

[
px(ρ−

1

ρ
)µ1µ2 + (µ2

2 + ρµ1µ2)
1− ρ2

ρ
µ2(ρµ2 + µ1)x

+(µ2
1 + ρµ1µ2)

1− ρ2

ρ
µ1(ρµ1 + µ2)y +

(1− ρ2)2

ρ2
µ1µ2(ρµ1 + µ2)(ρµ2 + µ1)xy

+
1

ρ2
µ1µ2(ρµ1 + µ2)(ρµ2 + µ1)

]
=

1

A1A2

[(
µ2

1 + µ2
2 + (ρ+

1

ρ
)µ1µ2

)
(ρ− 1

ρ
)µ1µ2 + (µ1 + ρµ2)

1− ρ2

ρ
µ2

2(ρµ1 + µ2)x

+ (µ2 + ρµ1)
1− ρ2

ρ
µ2

1(ρµ2 + µ1)y +
(1− ρ2)2

ρ2
µ1µ2(ρµ1 + µ2)(ρµ2 + µ1)xy

+
1

ρ2
µ1µ2(ρµ1 + µ2)(ρµ2 + µ1)

]
=

1

A1A2

[
(µ1 + ρµ2)

1− ρ2

ρ
µ2

2(ρµ1 + µ2)x+ (µ2 + ρµ1)
1− ρ2

ρ
µ2

1(ρµ2 + µ1)y

+
(1− ρ2)2

ρ2
µ1µ2(ρµ1 + µ2)(ρµ2 + µ1)xy + µ1µ2

[
ρµ2

1 + ρµ2
2 + µ1µ2(1 + ρ2)

]]
=

1

A1A2

(ρµ1 + µ2)(ρµ2 + µ1)(1− ρ2)

ρ2

[
(1− ρ2)µ1µ2xy + ρµ2

2x+ ρµ2
1y + µ1µ2

ρ2

1− ρ2

]
=xy +

ρ

1− ρ2

µ2

µ1

x+
ρ

1− ρ2

µ1

µ2

y +
ρ2

(1− ρ2)2

=

(
x+

ρ

1− ρ2

µ1

µ2

)(
y +

ρ

1− ρ2

µ2

µ1

)
So the original quantity (3.34) is equal to

min
x,y

(
x+

ρ

1− ρ2

µ1

µ2

)(
y +

ρ

1− ρ2

µ2

µ1

)
subject to the constraints

x ≥ 1

1− ρ2
, y ≥ 1

1− ρ2

xy − µ2
1y ≥

ρ2

(1− ρ2)2

xy − µ2
2x ≥

ρ2

(1− ρ2)2

When ρ = 0, this minimization problem is simplified to

min
x,y

xy
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subject to the constraints

x ≥1, y ≥ 1

x ≥µ2
1, y ≥ µ2

2,

which will be lower bounded by µ2
1µ

2
2. So suffices to consider the case when ρ 6= 0.

When 0 < ρ < 1, Observe that the previous constraints implies that x >

µ2
1, y > µ2

2. So we could replace the constraints x, y ≥ 1
1−ρ2 with x > µ2

1, y > µ2
2,

the minimizing value will not increase as the domain enlarges. The original

quantity (3.34) is lower bounded by

min
x,y

(
x+

ρ

1− ρ2

µ1

µ2

)(
y +

ρ

1− ρ2

µ2

µ1

)
(3.36)

subject to the constraints

x >µ2
1, y > µ2

2

xy − µ2
1y ≥

ρ2

(1− ρ2)2

xy − µ2
2x ≥

ρ2

(1− ρ2)2

(3.37)

Since ρ > 0, the target (3.36) is increasing when x or y increases. For any

feasible x, y satisfying (3.37), fix y, if neither constraints involving x are tight,

one could always fix y and decrease x until one of the constraints become tight,

and the target functional (3.36) also decreases. And the tight constraint can not

be x = µ2
1, in this case xy − µ2

1y = 0 < ρ2

(1−ρ2)2
for ρ > 0.

Assume the constraint xy − µ2
1y ≥

ρ2

(1−ρ2)2
is tight, then we have

y =
ρ2

(1− ρ2)2

1

x− µ2
1

Above minimization functional (3.36) can be rewritten as a function of x:

F (x) :=

(
x+

ρ

1− ρ2

µ1

µ2

)(
ρ2

(1− ρ2)2

1

x− µ2
1

+
ρ

1− ρ2

µ2

µ1

)
=

ρ2

(1− ρ2)2

x

x− µ2
1

+
ρ

1− ρ2

µ2

µ1

x+
ρ

1− ρ2

µ1

µ2

ρ2

(1− ρ2)2

1

x− µ2
1

+
ρ2

(1− ρ2)2

=
ρ2

(1− ρ2)2

[
2 +

1− ρ2

ρ

µ2

µ1

x+

(
ρ

1− ρ2

µ1

µ2

+ µ2
1

)
1

x− µ2
1

]
When x > µ2

1, above functional F (x) is first decreasing on (µ2
1, x0) and then

increasing on (x0,∞), where x0 = µ2
1 + µ1

µ2

√
ρ

1−ρ2µ1µ2 + ρ2

(1−ρ2)2
.
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And the constraint (3.37) pose a constraint on x’s range:

ρ2

(1− ρ2)2

x

x− µ2
1

− µ2
2x ≥

ρ2

(1− ρ2)2

⇔µ2
2x

2 − µ2
2µ

2
1x−

ρ2

(1− ρ2)2
µ2

1 ≤ 0

⇔
µ2

1µ2 − µ1

√
µ2

1µ
2
2 + 4ρ2

(1−ρ2)2

2µ2

≤ x ≤
µ2

1µ2 + µ1

√
µ2

1µ
2
2 + 4ρ2

(1−ρ2)2

2µ2

⇔µ2
1

2
− µ1

2µ2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
≤ x ≤ µ2

1

2
+

µ1

2µ2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
(3.38)

One can check that the following holds:

µ2
1

2
+

µ1

2µ2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
≤ x0

⇔ 1

2µ2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
≤ µ1

2
+

1

µ2

√
ρ

1− ρ2
µ1µ2 +

ρ2

(1− ρ2)2

⇔

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
− µ1µ2 ≤ 2

√
ρ

1− ρ2
µ1µ2 +

ρ2

(1− ρ2)2

⇔2µ2
1µ

2
2 +

4ρ2

(1− ρ2)2
− 2µ1µ2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
≤ 4ρ

1− ρ2
µ1µ2 +

4ρ2

(1− ρ2)2

⇔µ1µ2 −
2ρ

1− ρ2
≤

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2

Thus the minimizer of F (x) subject to the constraint (3.38) happens at the

x1 :=
µ2

1

2
+

µ1

2µ2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
.

which will lead to the corresponding y1 =
µ22
2

+ µ2
2µ1

√
µ2

1µ
2
2 + 4ρ2

(1−ρ2)2
.

At this choice, one could compute F (x1) as:(
µ2

1

2
+

µ1

2µ2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
+

ρ

1− ρ2

µ1

µ2

)(
µ2

2

2
+

µ2

2µ1

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2
+

ρ

1− ρ2

µ2

µ1

)

=

(
ρ

1− ρ2
+

1

2
µ1µ2 +

1

2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2

)2

If we assume the other constraint xy − µ2
2x ≥

ρ2

(1−ρ2)2
in constraints (3.37) is

tight, by a similar argument to above, one could get to the same minimizing value

as F (x1).

So the original quantity (3.34) subject to constraints (3.35) is lower bounded

by
(

ρ
1−ρ2 + 1

2
µ1µ2 + 1

2

√
µ2

1µ
2
2 + 4ρ2

(1−ρ2)2

)2

.
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Lemma 3.10. For 0 < ρ < 1, µ1 > 0, µ2 > 0. There are two roots θ1 ≤ 0 < θ2 ≤

1 to following equation

S1(θ) = S2(θ)

and θ2 =

√
4ρ2+µ21µ

2
2(1−ρ2)2−µ1µ2(1−ρ2)

2ρ
.

Proof. The equation S1(θ) = S2(θ) can be simplified as

(1− ρ2)1−ρ2
ρ
µ1µ2

2(1 + θ) + 1−ρ2
ρ
µ1µ2

(
ρ

1− ρ2
+

1

2
µ1µ2 +

1

2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2

)2

=
(1− ρ2)µ2

1µ
2
2

1− θ2

⇔ 1− ρ2

2ρ(1 + θ) + (1− ρ2)µ1µ2

(
ρ

1− ρ2
+

1

2
µ1µ2 +

1

2

√
µ2

1µ
2
2 +

4ρ2

(1− ρ2)2

)2

=
µ1µ2

1− θ2

Denote α = 2ρ
1−ρ2 > 0, β = µ1µ2 > 0, then we could rewrite above equation as

1

α(1 + θ) + β

(
α + β +

√
β2 + α2

)2

=
4β

1− θ2

⇔4α2β2(1− θ2) = 4β(α(1 + θ) + β)
(
α + β −

√
α2 + β2

)2

⇔α2βθ2 + α
(
α + β −

√
α2 + β2

)2

θ + (α + β)
(
α + β −

√
α2 + β2

)2

− α2β = 0

⇔(αθ + β −
√
α2 + β2)

(
αβθ + α2 + (α + β)2 − (2α + β)

√
α2 + β2

)
= 0

The last step follows from the following verification: For the coefficient of θ,

α
(
α2 + (α + β)2 − (2α + β)

√
α2 + β2

)
+ αβ

(
β −

√
α2 + β2

)
=α
(
α2 + β2 + (α + β)2 − 2(α + β)

√
α2 + β2

)
= α

(
α + β −

√
α2 + β2

)2

;

For the constant part,

(β −
√
α2 + β2)

(
α2 + (α + β)2 − (2α + β)

√
α2 + β2

)
=β
(
α2 + (α + β)2

)
−
√
α2 + β2

(
α2 + (α + β)2 + 2αβ + β2

)
+ (2α + β)(α2 + β2)

=βα2 + β(α + β)2 + (2α + β)(α2 + β2)− 2(α + β)2
√
α2 + β2

=βα2 + α(α2 + β2)− α(α + β)2 + (α + β)
[
α2 + β2 + (α + β)2 − 2(α + β)

√
α2 + β2

]
=(α + β)

(
α + β −

√
α2 + β2

)
− α2β.

So there are two roots θ1 = −α2+(α+β)2−(2α+β)
√
α2+β2

αβ
∈ [−1, 1], θ2 =

−β+
√
α2+β2

α
to equation S1(θ) = S2(θ).
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And one can verify that θ1 ≤ 0 < θ2 ≤ 1 from α > 0, β > 0

θ1 = −α
2 + (α + β)2 − (2α + β)

√
α2 + β2

αβ
≤ 0

⇐2α2 + β(2α + β) ≥ (2α + β)
√
α2 + β2

⇐2α2 ≥ (2α + β)
(√

α2 + β2 − β
)

⇐2(
√
α2 + β2 + β) ≥ 2α + β

1 ≥ θ2 =
−β +

√
α2 + β2

α
> 0

⇐α + β ≥
√
α2 + β2 > β

When we put α = 2ρ
1−ρ2 > 0, β = µ1µ2 > 0 into θ2, we will get back to

θ2 =

√
4ρ2+µ21µ

2
2(1−ρ2)2−µ1µ2(1−ρ2)

2ρ
. This finishes the proof.



Chapter 4

Log-Convexity of Fisher

Information

4.1 Introduction

The primary motivation for this chapter comes from one special case of non-

convex problems (1.1), which occurs often times in evaluation of achievable rate

regions or outer bounds to the capacity regions or optimal rate regions in network

information theory settings. Let WY |X denote a channel that maps input random

variable X with distribution µX into output random variable Y with distribution

µY . If X and Y takes values in a finite alphabet space, then consider the problem

of computing the maximum, over µX , of

Fλ(µX) := λH(X)−H(Y ),

where λ ≥ 0 is a fixed constant. When λ ≥ 1, it is immediate from the data-

processing inequality that the functional Fλ(µX) is concave in µX . However for

λ ∈ [0, 1), this is not necessarily true. In particular for λ = 0, F0(µX) is convex

in µX . Therefore, from a optimization perspective, computing the optimizers of

Fλ(µX) becomes a non-convex optimization problem at least for some values of

λ in the range [0, 1).

For example, consider the lossless source coding with one helper 1.1.6 in In-

troduction chapter, recall that the weighted sum rate for the optimal rate region

ApXY is given by

Sλ(pXY ) = H(Y ) + KqX [H(Y )− λH(X)] (pX)

87
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for some λ ≥ 0. Here the ”channel law” WY |X is fixed by pY |X . To explicitly

evaluate Sλ(pXY ), one needs to determine all its dual representations, that is, for

any real-valued vectors dX :

min
qX

H(Y )− λH(X)− EqX [dX ] = −max
qX
{Fλ(qX) + EqX [dX ]} (4.1)

When the channel WY |X is the binary-symmetric-channel (BSC), say with

crossover probability p, consider the following reparameterization of µX , defined

by µX(u) = H−1
2 (u), whereH−1

2 : [0, 1] 7→ [0, 1
2
] denotes the inverse binary entropy

function. Under this reparameterization, for BSC, observe that

Fλ(u) = λu−H2(p ∗H−1
2 (u)).

It was shown in [64] that H2(p ∗H−1
2 (u)) is convex in u and hence λu −H2(p ∗

H−1
2 (u)) is a concave function in u for any λ. Therefore this non-linear parameter-

ization converted the non-convex optimization problem to a convex-optimization

problem. It is also worth remarking that the convexity of H2(p∗H−1
2 (u)) was de-

veloped by Wyner and Ziv in the context of evaluating the superposition-coding

region for a degraded binary symmetric broadcast channel.

Additive White Gaussian Noise channels are in many ways the continuous

analogue of Binary Symmetric Channels. Therefore it is natural to see if there is

an analogous result in the additive Gaussian noise setting, where under a suitable

parameterization of µX , h(µX) - the differential entropy - becomes linear in the

parameter and h(TGµX) becomes convex in the parameter, where TG refers to the

channel with additive Gaussian noise W .

For distributions on binary alphabets, there is only one degree of freedom and

hence the parameterization of µX(u) = H−1
2 (u) is forced on us, if we wish to

make H2(µX) linear. In the continuous world we assume that µX evolves along

the heat flow, i.e. Xt := X +
√
tZ, t > 0, where Z is the standard Gaussian and

independent ofX. Therefore we seek a parameterization t = φ(u) such that h(X+√
φ(u)Z) is linear in u and investigate whether, the output entropy, h(µY ) =

h(X +
√
φ(u)Z +W ) is convex in u, where W is some Gaussian independent of

X and Z.

Let µXt denote the probability density function of Xt = X +
√
tZ. A bit of

algebra immediately shows that this question is equivalent to asking whether the
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Fisher information I(µXt ) is log-convex in t, for all random variables X (see the

following remark 4.1).

Remark 4.1. Let φ(u) : [0, 1] → [0, 1], with φ(0) = 0 and φ(1) = 1, be the

uniquely defined increasing function of u such that h(X +
√
φ(u)Z) is linear in

u. Then we have

0 =
d2

du2
h(X +

√
φ(u)Z)

(a)
=

1

2

(
d2φ(u)

du2
I(µXφ(u)) +

(
dφ(u)

du

)2
d

dφ(u)
I(µXφ(u))

)
.

Here µXφ(u) is the probability density function of the random variable X+
√
φ(u)Z.

Step (a) follow from Equation (4.3). Now, showing that d2

du2
h(X+

√
φ(u)Z+W ) ≥

0, for W ∼ N (0, σ2) independent of (X,Z), is equivalent to showing that

0 ≤ 1

2

(
d2φ(u)

du2
I(µX+W

φ(u) ) +

(
dφ(u)

du

)2
d

dφ(u)
I(µX+W

φ(u) )

)
.

Here µX+W
φ(u) is the probability density function of the random variable X +√

φ(u)Z +W . This can be rewritten using the equalities above as requiring

d
dφ(u)

I(µX+W
φ(u) )

I(µX+W
φ(u) )

≥
d

dφ(u)
I(µXφ(u))

I(µXφ(u))
.

Since I(µX+W
φ(u) ) = I(µXφ(u1)) for some u1 ≥ u, the above inequality is equivalent to

showing that
d
dt
I(µXt )

I(µXt )

is increasing in t or equivalently, that log I(fXt ) is convex in t. Thus, the result

we showed can be considered as a continuous analogue of the convexity result for

BSC established by Wyner and Ziv.

4.1.1 An independent motivation

Let X be a random variable with a finite variance. Let g
(k)
X (t) := ∂k

∂tk
h(µXt ).

Notice that Fisher information I(µXt ) = 2g
(1)
X (t), see Eq. (4.3) in the next sec-

tion. Further, let us denote g
(0)
X (t) = h(X). Let Z be a Gaussian random vari-

able with the same variance as X. In Section 12 of [39], McKean observes that

g
(0)
Z (t) ≥ g

(0)
X (t) ≥ 0, g

(1)
Z (t) ≤ g

(1)
X (t) ≤ 0, and g

(2)
Z (t) ≥ g

(2)
X (t) ≥ 0. Therefore he

conjectures that

(−1)kg
(k)
Z (t) ≥ (−1)kg

(0)
X (t) ≥ 0

holds for every k ≥ 3.
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The above conjecture and similar ones on the alternative signs of derivatives

(which characterize completely monotone functions) has attracted a fair amount

of attention in mathematics. See [58], [60].

In [15], the authors study the signs of the higher order derivatives of gX(t) :=

h(µXt ). They establish that g
(3)
X (t) ≥ 0, and g

(4)
X (t) ≤ 0. The techniques used

follow the ideas in [59], which was in turn motivated by calculations of Bakry.

The authors further conjectured that g
(k)
X (t) ≥ 0, if k is odd and g

(k)
X (t) ≤ 0 if k

is even; or equivalently that I(µXt ) = 2g
(1)
X (t) is a completely monotone function

of t, for all X. Note that this conjecture does not require Gaussian extremality

and hence is a weaker conjecture to that of McKean.

The following theorem presents an alternate characterization of completely

monotone function.

Theorem 4.1 (Bernstein’s theorem). Let g(t) : [0,∞)→ [0,∞) be a continuous

and infinitely differentiable function. The following are equivalent:

• g is completely monotone: ∀n ∈ N,∀t > 0, (−1)ng(n)(t) ≥ 0;

• g is the Laplace transform of a finite Borel measure µ in R+:

∀x ∈ R+, g(x) =

∫ ∞
0

e−xtdµ(t).

It can be shown that any completely monotone function g(t) is log-convex

with respect to t, see [22]. Thus, if I(µXt ) is a completely monotone function with

respect to t, then ln I(µXt ) is convex with respect to t, which is also stated as

Conjecture 2 in [15].

The main result of this chapter is establishing that I(µXt ) is log-convex in t,

thus resolving affirmatively Conjecture 2 in [15]. We do this by extending the

ideas developed in [15] and [67].

This chapter will first introduce the ideas and tools developed in [15] and [67],

then present the results on the log-convexity of Fisher Information, and in the

end, reveal its connection with the non-convex functional H(Yt)−λH(Xt), where

Xt := X+
√
tZ is in the set of distributions along the heat flow and Yt is obtained

by passing Xt through an additive Gaussian noise channel.
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4.1.2 Notations and Previous results

Given a random variable X on some probability space (Ω,A,P) with values in

R, let the cumulative distribution function of X be F̃ (x) := Pr(X ≤ x), x ∈ R.

For Z some independent standard Gaussian random variable with mean zero and

variance one, consider Xt := X +
√
tZ, t > 0, with probability density function

µXt (x) with respect to the Lebesgue measure on R. The density µXt (x), x ∈ R,

can be written as

µXt (x) =

∫
R

−z√
2πt

e−
z2

2t F̃ (x− z)dz.

It is well-known in literature, e.g., [26], that the probability density function

µXt (x) of Xt is always upper bounded by 1 + t, strictly positive and infinitely

differentiable with respect to x ∈ (−∞,∞) and t ∈ (0,∞), and satisfy that

lim
|x|→∞

∂nµXt (x)

∂xn
= 0,∀n ∈ Z+.

Besides, µXt (x) also satisfies the heat equation, see, e.g., [56].

∂

∂t
µXt (x) =

1

2

∂2

∂x2
µXt (x). (4.2)

The differential entropy of Xt, h(Xt), t > 0, is defined as

h(Xt) = −
∫
R
µXt (x) lnµXt (x)dx.

When X has a finite variance P , h(Xt) exists and is maximized by X following

a Gaussian distribution with variance P .

The Fisher information of Xt is defined as

I(µXt ) :=

∫
R

(
∂

∂x
lnµXt (x)

)2

µXt (x)dx.

One can verify that the Fisher information I(µXt ), t > 0, always exists and is

infinitively differentiable with respect to t ∈ (0,∞), see, e.g., [15].

The Fisher information I(µXt ) is closely related to the differential entropy of

Xt via the de Bruijin’s identity when X has a finite variance, see, e.g., [19]

∂

∂t
h(Xt) =

1

2
I(µXt ). (4.3)

Conjecture 2 in [15] postulates that ln I(µXt ) is convex in t > 0. In this

chapter, a proof to this conjecture is presented along the lines of the arguments

in [15] and [67].
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For convenience of writing, we will suppress the dependence on t and write

v(x) := lnµXt (x), t > 0, and vk(x) :=
∂k lnµXt (x)

∂xk
, k ∈ Z+, i.e., vk(x) is the k-th

derivative of v as a function of x ∈ R. Well-definedness of vk(x) for any k ∈ Z+

follows from the known properties of µXt (x).

Proposition 4.1 (Proposition 2 in [15]). For any r,mi, ki ∈ Z+,∫
R

∣∣∣∣∣
r∏
i=1

vmiki (x)

∣∣∣∣∣µXt (x)dx <∞,

and

lim
|x|→∞

∣∣∣∣∣
r∏
i=1

vmiki (x)

∣∣∣∣∣µXt (x) = 0.

We define 〈ϕ〉 :=
∫
R ϕµ

X
t (x)dx to denote the integration with respect to the

probability measure µXt (x). Under this notation

I(µXt ) = 〈v2
1〉. (4.4)

The following lemma is needed in our proof.

Lemma 4.1 (Lemma 3 in [67]). For k ≥ 2, let ϕ(x) be some function continuously

differentiable with respect to x satisfying that lim|x|→∞ ϕvk−1µ
X
t = 0, then

〈ϕvk + ϕv1vk−1 +
∂ϕ

∂x
vk−1〉 = 0.

One can see that this lemma follows from the basic integration by parts prop-

erty. We present the short proof here for being self-contained.

Proof.

〈ϕvk + ϕv1vk−1 +
∂ϕ

∂x
vk−1〉 =

∫
R

(
ϕvkµ

X
t + ϕvk−1

∂µXt
∂x

+
∂ϕ

∂x
vk−1µ

X
t

)
dx

(a)
=

∫
R

(
∂

∂x
ϕvk−1µ

X
t

)
dx

= ϕvk−1µ
X
t |∞−∞

(b)
= 0.

Equality (a) follows from the integration by parts property, and equality (b)

follows from the condition that lim|x|→∞ ϕvk−1µ
X
t = 0.

Notice that by Proposition 4.1 we could choose ϕ in Lemma 4.1 to be in the

form of
∏r

i=1 v
mi
ki

(x), where r,mi, ki ∈ Z+.
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Lemma 4.2 ( [15], [67]). Let ϕ(x) be some function continuously differentiable

with respect to x satisfying that lim|x|→∞ ϕv1µ
X
t = 0. For k ≥ 0, the following

hold:

∂

∂t
vk =

1

2

(
vk+2 +

k∑
i=0

(
k

i

)
vi+1vk−i+1

)
,

∂

∂t
〈ϕ〉 = 〈 ∂

∂t
ϕ− 1

2

∂ϕ

∂x
v1〉.

Proof. The proof idea is to interchange integral and derivatives by Proposition

4.1 and the Dominated Convergence Theorem, and the calculations follow from

the following observations (for details, see Appendix A in [67]). We present the

outline here for being rather self-contained.

2
∂

∂t
vk = 2

∂

∂t

(
∂k

∂xk
lnµXt (x)

)
= 2

∂k

∂xk

(
∂

∂t
lnµXt (x)

)
(a)
=

∂k

∂xk

(
∂2

∂x2
µXt (x)

µXt (x)

)

=
∂k

∂xk
(
v2 + v2

1

)
(b)
= vk+2 +

k∑
i=0

(
k

i

)
vi+1vk−i+1.

Equality (a) is due to the heat equation (4.2) and (b) can be established by

mathematical induction.

For the second part, observe that

∂

∂t
〈ϕ〉 = 〈 ∂

∂t
ϕ〉+

∫
R
ϕ
∂µXt
∂t

dx

(a)
= 〈 ∂

∂t
ϕ〉+

1

2

∫
R
ϕ
∂2µXt
∂x2

dx

(b)
= 〈 ∂

∂t
ϕ〉 − 1

2

∫
R

∂ϕ

∂x

∂µXt
∂x

dx

= 〈 ∂
∂t
ϕ〉 − 1

2
〈∂ϕ
∂x
v1〉.

Equality (a) is again due to the heat equation (4.2) and (b) follows from integra-

tion by parts and the assumption that lim|x|→∞ ϕv1µ
X
t = 0.

One can compute the derivatives of the Fisher information I(µXt ) with respect

to t as following, see [36] and [67].
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Lemma 4.3 ( [15], [67]). For t > 0, Fisher information I(µXt ) and its derivatives

up to second order can be expressed as:

d

dt
I(µXt ) = −〈v2

2〉,

d2

dt2
I(µXt ) = 〈v2

3 + 2v2
1v

2
2 + 4v1v2v3〉.

Proof. In the interest of being self-contained, we outline the proof via applications

of Lemmas 4.2 and 4.1. Observe that

d

dt
I(µXt ) =

d

dt
〈v2

1〉

(a)
= 〈2v1

∂v1

∂t
− v2v

2
1〉

(b)
= 〈v1(v3 + 2v1v2)− v2v

2
1〉

(c)
= −〈v2

2〉.

Here (a), (b) follow from Lemma 4.2, and (c) follows from Lemma 4.1 by setting

ϕ = v1 and k = 3. Similarly, note that

d2

dt2
I(µXt ) = − d

dt
〈v2

2〉

(a)
= 〈−2v2

∂v2

∂t
+ v2v3v1〉

(b)
= 〈−v2(v4 + 2v1v3 + 2v2

2) + v2v3v1〉
(c)
= 〈v2

3 − 2v3
2〉

(d)
= 〈v2

3 + 2v2
1v

2
2 + 4v1v2v3〉.

Here (a), (b) follow from Lemma 4.2, (c) follows from Lemma 4.1 by setting ϕ = v2

and k = 4, and (d) follows from Lemma 4.1 by setting ϕ = v2
2 and k = 2.

Remark 4.2. There are several equivalent ways of expressing d2

dt2
I(µXt ) using

Lemma 4.2. For instance, [67] expressed it as 〈v2
3 − 2v3

2〉. We choose this partic-

ular representation, 〈v2
3 + 2v2

1v
2
2 + 4v1v2v3〉, as it turns out to be useful to prove

the log-convexity of Fisher information.

Above set of tools and notations could make a short proof to Costa’s Entropy

Power Inequality (EPI) [16] in single dimension case. This proof comes from [59],

which is in turn motivated by calculations of Bakry and Emery.

Lemma 4.4 (Costa’s EPI, [16]). Let X be a random variable on some probability

space (Ω,A,P) with values in R, and Z some independent standard Gaussian

random variable. e2h(X+
√
tZ) is concave in t ≥ 0.
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Proof. By computing the second derivative of e2h(X+
√
tZ) with respect to t, we

need to show :

2e2h(X+
√
tZ)∂

2h(X +
√
tZ)

∂2t
+ 4e2h(X+

√
tZ)

(
∂h(X +

√
tZ)

∂t

)2

≤ 0

which can be rewritten in terms of Fisher information I(µXt ) and its derivatives:

e2h(X+
√
tZ)
[
−〈v2

2〉+ 〈v2
1〉2
]
≤ 0

In Lemma 4.1, choose ϕ = 1 and k = 2, we have 〈v2 + v2
1〉 = 0, so above is

equivalent to

−〈v2
2〉+ 〈v2〉2 ≤ 0,

which holds trivially by convexity of x2 with respect to x.

The results of this chapter are new in this thesis. This is a joint work with

Prof. Chandra Nair and Prof. Michel Ledoux from University of Toulouse –

Paul-Sabatier.

4.2 Main Result

Theorem 4.2. Let X be a random variable on some probability space (Ω,A,P)

with values in R, and Z some independent standard Gaussian random variable.

Consider Xt := X +
√
tZ, t > 0, with probability density function µXt (x) with

respect to the Lebesgue measure on R.

The Fisher information of Xt is log-convex in t, i.e.

ln I(µXt ) = ln

∫
R

(
∂

∂t
lnµXt (x)

)2

µXt (x)dx

is convex in t.

Proof. Log-convexity of Fisher information is equivalent to showing(
d

dt
I(µXt )

)2

≤ I(µXt )
d2

dt2
I(µXt ).

Using Lemma 4.3, this is equivalent to showing

〈v2
2〉2 ≤ 〈v2

1〉〈v2
3 + 2v2

1v
2
2 + 4v1v2v3〉. (4.5)
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In Lemma 4.1, the choices that k = 2, ϕ = v2 and that k = 2, ϕ = v2
1 will lead

to the following two equalities respectively

〈v2
2 + v2

1v2 + v1v3〉 = 0 (4.6)

〈v4
1 + 3v2

1v2〉 = 0. (4.7)

Consequently, for any α ∈ R we have

〈v2
2〉 = −〈v1(v3 + αv1v2 −

1− α
3

v3
1)〉.

The Cauchy-Schwarz inequality yields,

〈v2
2〉2 ≤ 〈v2

1〉〈(v3 + αv1v2 −
1− α

3
v3

1)2〉.

Thus to show inequality (4.5), it suffices to show that

〈(v3 + αv1v2 −
1− α

3
v3

1)2〉 ≤ 〈v2
3 + 2v2

1v
2
2 + 4v1v2v3〉 (4.8)

holds for some α ∈ R. Expanding, (4.8) is equivalent to

〈(2− α2)v2
1v

2
2 + (4− 2α)v1v2v3 −

1

9
(1− α)2v6

1 +
2

3
(1− α)v3

1v3 +
2

3
α(1− α)v4

1v2〉 ≥ 0.

In Lemma 4.1, the choices that k = 3, ϕ = v3
1 and that k = 2, ϕ = v4

1 will lead to

the following two equalities respectively.

〈v3
1v3 + v2v

4
1 + 3v2

1v
2
2〉 = 0

〈v6
1 + 5v4

1v2〉 = 0.

Thus proving inequality (4.8) for some α ∈ R is equivalent to proving the following

inequality

〈(2− α2)v2
1v

2
2 + (4− 2α)v1v2v3 −

1

9
(1− α)2v6

1 +
2

3
(1− α)v3

1v3 +
2

3
α(1− α)v4

1v2〉

+β〈v3
1v3 + v2v

4
1 + 3v2

1v
2
2〉+ γ〈v6

1 + 5v4
1v2〉 ≥ 0

(4.9)

for some α, β, γ ∈ R.

We successively choose the values α, β, γ to eliminate the terms whose signs

are not clear: first set α = 2 to get rid of 〈v1v2v3〉, then β = 2
3

to eliminate 〈v3
1v3〉,

and finally γ = 2
15

to handle 〈v4
1v2〉. With these choices, the above inequality

(4.9) reduces to 1
45
〈v6

1〉 ≥ 0, which holds trivially.
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4.3 Discussion

4.3.1 Generalization of log-convexity to higher dimensions

One clear question that is definitely worth addressing is to determine whether

the log-convexity of Fisher information along the heat flow also holds for random

vectors. In particular we ask, whether(
d3h(X +

√
tZ)

dt3

)(
dh(X +

√
tZ)

dt

)
≥
(
d2h(X +

√
tZ)

dt2

)2

where X and Z(∼ N (0, Id)) are independent random vectors taking values in Rd.

If X has independent components, then an application of the Cauchy-Schwartz

inequality immediately implies affirmatively the inequality above.

While the techniques applied in the scalar case do have natural extensions to

the vector case, preliminary investigations by the authors indicate that these ex-

tensions seem insufficient to establish the log-convexity for vector valued random

variables.

4.3.2 Generalization of convexity of the output entropy

Let us consider a channel given by

Y = AX + Z

where A is an l × d (channel-gain) matrix, X is the input, and Z(∼ N (0, Il)) is

the additive Gaussian noise. Then one can ask for flows in the space of input

distributions, say characterized by Xt, where h(Xt) is linear in t and h(Yt) is

convex in t.

An interesting such flow exists in the space of Gaussian vectors. Let X0 ∼

N (0, K0) and X1 ∼ N (0, K1) be two Gaussian random vectors with K0, K1 � 0.

Define

Kt = K
1
2
0

(
K
− 1

2
0 K1K

− 1
2

0

)t
K

1
2
0 ,

and Xt ∼ N (0, Kt). Note that this is a continuous path that connects the distri-

bution of X0 to that of X1. Further, observe that h(Xt) is linear in t. It follows

from the seminal work in [35], and is well-known, that

h(Yt) = log |AKtA
T + I|
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is convex in t.

From the perspective of non-convex optimization problems that arise in the

computation of achievable regions or outer bound in network information theory,

it will be very helpful to find similar flows in a more general setting, i.e. outside

the space of Gaussian vectors and more generally for larger class of channels.

Such results may also be useful in showing the uniqueness of local maximizers in

such settings as is observed in settings such as the MIMO Gaussian broadcast

channels.
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