On optimal weighted-sum rates for the modulo sum problem

IEEE ISIT 2020

Distributed Source Coding

Let $\left(X^{n}, Y^{n}\right)$ be a sequence of random variables that are generated i.i.d. according to $p(x, y)$, and denote $Z^{n}=\left(f\left(X_{1}, Y_{1}\right), f\left(X_{2}, Y_{2}\right), \cdots, f\left(X_{n}, Y_{n}\right)\right)$.

Figure 1: Distributed Source Coding

Distributed Source Coding

Let $\left(X^{n}, Y^{n}\right)$ be a sequence of random variables that are generated i.i.d. according to $p(x, y)$, and denote $Z^{n}=\left(f\left(X_{1}, Y_{1}\right), f\left(X_{2}, Y_{2}\right), \cdots, f\left(X_{n}, Y_{n}\right)\right)$.

Figure 1: Distributed Source Coding

A rate pair $\left(R_{X}, R_{Y}\right)$ is said to be achievable if there exists a sequence of $\left(n, R_{X}, R_{Y}\right)$-codes such that the $\operatorname{Pr}\left(\hat{Z}^{n} \neq Z^{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Problem

Consider $f\left(X_{i}, Y_{i}\right)=X_{i} \oplus Y_{i}$, what rate pairs $\left(R_{X}, R_{Y}\right)$ are achievable?

Known results

Slepian-Wolf region: [Slepian-Wolf 73']
When $Z=(X, Y)$, the capacity region is given by

$$
\begin{aligned}
R_{X} & \geq H(X \mid Y) \\
R_{Y} & \geq H(Y \mid X) \\
R_{X}+R_{Y} & \geq H(X Y)
\end{aligned}
$$

Known results

Slepian-Wolf region: [Slepian-Wolf 73']
When $Z=(X, Y)$, the capacity region is given by

$$
\begin{aligned}
R_{X} & \geq H(X \mid Y) \\
R_{Y} & \geq H(Y \mid X) \\
R_{X}+R_{Y} & \geq H(X Y)
\end{aligned}
$$

Remark:
Recovering (X, Y) with high probability is sufficient to decode any function $f(X, Y)$.

Known results

Slepian-Wolf region: [Slepian-Wolf 73']
When $Z=(X, Y)$, the capacity region is given by

$$
\begin{aligned}
R_{X} & \geq H(X \mid Y) \\
R_{Y} & \geq H(Y \mid X) \\
R_{X}+R_{Y} & \geq H(X Y)
\end{aligned}
$$

Remark:
Recovering (X, Y) with high probability is sufficient to decode any function $f(X, Y)$.

Körner-Marton region: [Körner-Marton 79']
When $Z=X \oplus Y$, a rate pair (R_{X}, R_{Y}) is achievable by linear codes if

$$
\begin{aligned}
& R_{X} \geq H(Z) \\
& R_{Y} \geq H(Z)
\end{aligned}
$$

Known results

Slepian-Wolf region: [Slepian-Wolf 73']
When $Z=(X, Y)$, the capacity region is given by

$$
\begin{aligned}
R_{X} & \geq H(X \mid Y) \\
R_{Y} & \geq H(Y \mid X) \\
R_{X}+R_{Y} & \geq H(X Y)
\end{aligned}
$$

Körner-Marton region: [Körner-Marton 79']
When $Z=X \oplus Y$, a rate pair $\left(R_{X}, R_{Y}\right)$ is achievable by linear codes if

$$
\begin{aligned}
& R_{X} \geq H(Z) \\
& R_{Y} \geq H(Z)
\end{aligned}
$$

This matches capacity region when (X, Y) follows Doubly Symmetric Binary Source distribution.

Remark:
Recovering (X, Y) with high probability is sufficient to decode any function $f(X, Y)$.

Remark:
First example showing that structured codes outperforms random coding for multiuser information theory problems.

Known results

Slepian-Wolf region: [Slepian-Wolf 73']
When $Z=(X, Y)$, the capacity region is given by

$$
\begin{aligned}
R_{X} & \geq H(X \mid Y) \\
R_{Y} & \geq H(Y \mid X) \\
R_{X}+R_{Y} & \geq H(X Y)
\end{aligned}
$$

Körner-Marton region: [Körner-Marton 79']
When $Z=X \oplus Y$, a rate pair $\left(R_{X}, R_{Y}\right)$ is achievable by linear codes if

$$
\begin{aligned}
& R_{X} \geq H(Z) \\
& R_{Y} \geq H(Z)
\end{aligned}
$$

More distributions are discovered for optimality of this region on weighted sum rate. (this work)

Remark:
Recovering (X, Y) with high probability is sufficient to decode any function $f(X, Y)$.

Remark:
First example showing that structured codes outperforms random coding for multiuser information theory problems.

Known results

Exercise 16.23 in [Csiszár-Körner] ${ }^{1}$
When $H(Z) \geq \min \{H(X), H(Y)\}$, Slepian-Wolf rate region characterizes the capacity region \mathcal{C} for $Z=X \oplus Y$ in $G F(2)$.

[^0]
Known results

Exercise 16.23 in [Csiszár-Körner] ${ }^{1}$
More distributions are discovered for optimality of Slepian-Wolf region on weighted sum rate. (this work)

[^1]
Known results

Exercise 16.23 in [Csiszár-Körner] ${ }^{1}$
More distributions are discovered for optimality of Slepian-Wolf region on weighted sum rate. (this work)

Ahlswede-Han region: [Ahlswede-Han 83']

When $Z=X \oplus Y$, a rate pair $\left(R_{X}, R_{Y}\right)$ is achievable via a combination of linear codes and random binning if

$$
\begin{aligned}
R_{X} & \geq I(U ; X \mid V)+H(Z \mid U V) \\
R_{Y} & \geq I(V ; Y \mid U)+H(Z \mid U V) \\
R_{X}+R_{Y} & \geq I(U V ; X Y)+2 H(Z \mid U V)
\end{aligned}
$$

for some U and V that satisfy the Markov chain $U \rightarrow X \rightarrow Y \rightarrow V$.
${ }^{1}$ I. Csiszár and J. Körner, Information theory: Coding theorems for discrete memoryless systems

Known results

Cut-set lower bound: [Körner-Marton 79']
Any achievable rate pair (R_{X}, R_{Y}) for the modulo sum problem must satisfy

$$
\begin{aligned}
R_{X} & \geq H(Z \mid Y)=H(X \mid Y) \\
R_{Y} & \geq H(Z \mid X)=H(Y \mid X) \\
R_{X}+R_{Y} & \geq H(Z) .
\end{aligned}
$$

Main result: A lower bound

Theorem 1

Any achievable rate pair (R_{X}, R_{Y}) for the modulo sum problem must satisfy the following constraints for any $\lambda \geq 1$:

$$
\begin{aligned}
& R_{X}+\lambda R_{Y} \geq H(X Y)+\min _{U \rightarrow X \rightarrow Y} \lambda H(Z \mid U)-H(Y \mid U) \\
& \lambda R_{X}+R_{Y} \geq H(X Y)+\min _{V \rightarrow Y \rightarrow X} \lambda H(Z \mid V)-H(X \mid V)
\end{aligned}
$$

Main result: A lower bound

Theorem 1

Any achievable rate pair $\left(R_{X}, R_{Y}\right)$ for the modulo sum problem must satisfy the following constraints for any $\lambda \geq 1$:

$$
\begin{aligned}
& R_{X}+\lambda R_{Y} \geq H(X Y)+\min _{U \rightarrow X \rightarrow Y} \lambda H(Z \mid U)-H(Y \mid U) \\
& \lambda R_{X}+R_{Y} \geq H(X Y)+\min _{V \rightarrow Y \rightarrow X} \lambda H(Z \mid V)-H(X \mid V)
\end{aligned}
$$

Remark: From [Nair 10' 13']

$$
\begin{aligned}
& \min _{U \rightarrow X} \lambda H(Z \mid U)-H(Y \mid U) \\
& \quad=-\left.\mathfrak{C}_{\mu(x)}[H(Y)-\lambda H(Z)]\right|_{p(x)}
\end{aligned}
$$

where $\left.\mathfrak{C}_{x}[f]\right|_{x_{0}}$ denotes the upper concave envelope of the function $f(x)$ with respect to x evaluated at $x=x_{0}$.

Proof sketch

The multi-letter extensions of Ahlswede-Han region tends to the capacity region.

$$
\begin{aligned}
& n\left(R_{X}+\lambda R_{Y}\right)+n \varepsilon \\
& \geq I\left(U ; X^{n}\right)+\lambda I\left(V ; Y^{n} \mid U\right)+(1+\lambda) H\left(Z^{n} \mid U V\right)
\end{aligned}
$$

Proof sketch

The multi-letter extensions of Ahlswede-Han region tends to the capacity region.

$$
\begin{aligned}
& n\left(R_{X}+\lambda R_{Y}\right)+n \varepsilon \\
& \geq I\left(U ; X^{n}\right)+\lambda I\left(V ; Y^{n} \mid U\right)+(1+\lambda) H\left(Z^{n} \mid U V\right) \\
& \stackrel{(a)}{=} I\left(U ; X^{n}\right)+\underline{\lambda I\left(V ; Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+(1+\lambda) \underline{H\left(Z^{n} \mid U V\right)}
\end{aligned}
$$

The equalities (a) follows from Markov chain $V \rightarrow Y^{n} \rightarrow\left(U, Z^{n}\right)$

Proof sketch

The multi-letter extensions of Ahlswede-Han region tends to the capacity region.

$$
\begin{aligned}
& n\left(R_{X}+\lambda R_{Y}\right)+n \varepsilon \\
& \geq I\left(U ; X^{n}\right)+\lambda I\left(V ; Y^{n} \mid U\right)+(1+\lambda) H\left(Z^{n} \mid U V\right) \\
& \stackrel{(a)}{=} I\left(U ; X^{n}\right)+\underline{\lambda I\left(V ; Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+(1+\lambda) \underline{H\left(Z^{n} \mid U V\right)} \\
& =I\left(U ; X^{n}\right)+\underline{\lambda H\left(Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+H\left(Z^{n} \mid U V\right)
\end{aligned}
$$

The equalities (a) follows from Markov chain $V \rightarrow Y^{n} \rightarrow\left(U, Z^{n}\right)$

Proof sketch

The multi-letter extensions of Ahlswede-Han region tends to the capacity region.

$$
\begin{aligned}
& n\left(R_{X}+\lambda R_{Y}\right)+n \varepsilon \\
& \geq I\left(U ; X^{n}\right)+\lambda I\left(V ; Y^{n} \mid U\right)+(1+\lambda) H\left(Z^{n} \mid U V\right) \\
& \stackrel{(a)}{=} I\left(U ; X^{n}\right)+\underline{\lambda I\left(V ; Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+(1+\lambda) \underline{H\left(Z^{n} \mid U V\right)} \\
& =I\left(U ; X^{n}\right)+\underline{\lambda H\left(Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+H\left(Z^{n} \mid U V\right) \\
& \stackrel{(b)}{=} I\left(U ; X^{n}\right)+H\left(Y^{n} \mid U\right)+\underline{H}\left(Z^{n} \mid U Y^{n}\right)+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right) \\
& \quad+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U V\right)
\end{aligned}
$$

The equalities (a) (b) follows from Markov chain $V \rightarrow Y^{n} \rightarrow\left(U, Z^{n}\right)$

Proof sketch

The multi-letter extensions of Ahlswede-Han region tends to the capacity region.

$$
\begin{aligned}
& n\left(R_{X}+\lambda R_{Y}\right)+n \varepsilon \\
& \geq I\left(U ; X^{n}\right)+\lambda I\left(V ; Y^{n} \mid U\right)+(1+\lambda) H\left(Z^{n} \mid U V\right) \\
& \stackrel{(a)}{=} I\left(U ; X^{n}\right)+\underline{\lambda I\left(V ; Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+(1+\lambda) \underline{H\left(Z^{n} \mid U V\right)} \\
& =I\left(U ; X^{n}\right)+\underline{\lambda H\left(Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+H\left(Z^{n} \mid U V\right) \\
& \stackrel{(b)}{=} I\left(U ; X^{n}\right)+H\left(Y^{n} \mid U\right)+\underset{\sim}{H\left(Z^{n} \mid U Y^{n}\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right) \\
& \quad+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U V\right) \\
& \quad \stackrel{(c)}{=} I\left(U ; X^{n}\right)+H\left(Y^{n} \mid U\right)+\underset{\sim}{H\left(X^{n} \mid U Y^{n}\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right) \\
& \quad+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U V\right)
\end{aligned}
$$

The equalities (a) (b) follows from Markov chain $V \rightarrow Y^{n} \rightarrow\left(U, Z^{n}\right)$ and (c) is due $H\left(Z^{n} \mid U Y^{n}\right)=H\left(X^{n} Z^{n} \mid U Y^{n}\right)=H\left(X^{n} \mid U Y^{n}\right)$.

Proof sketch

The multi-letter extensions of Ahlswede-Han region tends to the capacity region.

$$
\begin{aligned}
& n\left(R_{X}+\lambda R_{Y}\right)+n \varepsilon \\
& \geq I\left(U ; X^{n}\right)+\lambda I\left(V ; Y^{n} \mid U\right)+(1+\lambda) H\left(Z^{n} \mid U V\right) \\
& \stackrel{(a)}{=} I\left(U ; X^{n}\right)+\underline{\lambda I\left(V ; Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+(1+\lambda) H\left(Z^{n} \mid U V\right) \\
& =I\left(U ; X^{n}\right)+\underline{\lambda H\left(Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+H\left(Z^{n} \mid U V\right) \\
& \stackrel{(b)}{=} I\left(U ; X^{n}\right)+H\left(Y^{n} \mid U\right)+\underline{\sim} H\left(Z^{n} \mid U Y^{n}\right)+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right) \\
& \quad+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U V\right) \\
& \quad \quad+\underset{\sim}{\stackrel{(c)}{=}} I\left(U ; X^{n}\right)+H\left(Y^{n} \mid U\right)+\underset{\sim}{H}\left(X^{n} \mid U Y^{n}\right)+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right) \\
& \quad \quad+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U V\right) \\
& =H\left(X^{n} Y^{n}\right)+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U, V\right)
\end{aligned}
$$

The equalities (a) (b) follows from Markov chain $V \rightarrow Y^{n} \rightarrow\left(U, Z^{n}\right)$ and (c) is due $H\left(Z^{n} \mid U Y^{n}\right)=H\left(X^{n} Z^{n} \mid U Y^{n}\right)=H\left(X^{n} \mid U Y^{n}\right)$.

Proof sketch

The multi-letter extensions of Ahlswede-Han region tends to the capacity region.

$$
\begin{aligned}
& n\left(R_{X}+\lambda R_{Y}\right)+n \varepsilon \\
& \geq I\left(U ; X^{n}\right)+\lambda I\left(V ; Y^{n} \mid U\right)+(1+\lambda) H\left(Z^{n} \mid U V\right) \\
& \stackrel{(a)}{=} I\left(U ; X^{n}\right)+\underline{\lambda I\left(V ; Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+(1+\lambda) \underline{H\left(Z^{n} \mid U V\right)} \\
& =I\left(U ; X^{n}\right)+\underline{\lambda H\left(Z^{n} \mid U\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+H\left(Z^{n} \mid U V\right) \\
& \stackrel{(b)}{=} I\left(U ; X^{n}\right)+H\left(Y^{n} \mid U\right)+\underset{\sim}{H\left(Z^{n} \mid U Y^{n}\right)}+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right) \\
& \quad+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U V\right) \\
& \quad \begin{array}{l}
\stackrel{(c)}{=} I\left(U ; X^{n}\right)+H\left(Y^{n} \mid U\right)+\underset{\sim}{H}\left(X^{n} \mid U Y^{n}\right)+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right) \\
\quad \quad+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U V\right) \\
=H\left(X^{n} Y^{n}\right)+\lambda I\left(V ; Y^{n} \mid U Z^{n}\right)+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)+I\left(Z^{n} ; Y^{n} \mid U, V\right) \\
\geq n H(X Y)+\lambda H\left(Z^{n} \mid U\right)-H\left(Y^{n} \mid U\right)
\end{array}
\end{aligned}
$$

The equalities (a) (b) follows from Markov chain $V \rightarrow Y^{n} \rightarrow\left(U, Z^{n}\right)$ and (c) is due $H\left(Z^{n} \mid U Y^{n}\right)=H\left(X^{n} Z^{n} \mid U Y^{n}\right)=H\left(X^{n} \mid U Y^{n}\right)$.

Sinlge-letterize the lower bound

Lemma 1

Let $\lambda \geq 1$ and let $\left(X^{n}, Y^{n}\right)$ be i.i.d distributed according to $p(x, y)$ where X, Y take values in a finite field. Let Z^{n} be obtained as $Z_{i}=X_{i} \oplus Y_{i}, i=1, . ., n$, i.e. the component-wise modulo sum on the field. Then for any $\lambda \geq 1$ the following holds:

$$
\begin{aligned}
& \min _{\hat{U}: \hat{U} \rightarrow X^{n} \rightarrow Y^{n}} \lambda H\left(Z^{n} \mid \hat{U}\right)-H\left(Y^{n} \mid \hat{U}\right) \\
& \quad=n\left(\min _{U: U \rightarrow X \rightarrow Y} \lambda H(Z \mid U)-H(Y \mid U)\right) .
\end{aligned}
$$

Sinlge-letterize the lower bound

Lemma 1

Let $\lambda \geq 1$ and let $\left(X^{n}, Y^{n}\right)$ be i.i.d distributed according to $p(x, y)$ where X, Y take values in a finite field. Let Z^{n} be obtained as $Z_{i}=X_{i} \oplus Y_{i}, i=1, . ., n$, i.e. the component-wise modulo sum on the field. Then for any $\lambda \geq 1$ the following holds:

$$
\begin{aligned}
& \min _{\hat{U}: \hat{U} \rightarrow X^{n} \rightarrow Y^{n}} \lambda H\left(Z^{n} \mid \hat{U}\right)-H\left(Y^{n} \mid \hat{U}\right) \\
& \quad=n\left(\min _{U: U \rightarrow X \rightarrow Y} \lambda H(Z \mid U)-H(Y \mid U)\right) .
\end{aligned}
$$

Proof sketch

- Taking i.i.d. copies of the minimizer of the right hand side, left hand side is at most the value of right hand side.

Sinlge-letterize the lower bound

Lemma 1

Let $\lambda \geq 1$ and let $\left(X^{n}, Y^{n}\right)$ be i.i.d distributed according to $p(x, y)$ where X, Y take values in a finite field. Let Z^{n} be obtained as $Z_{i}=X_{i} \oplus Y_{i}, i=1, . ., n$, i.e. the component-wise modulo sum on the field. Then for any $\lambda \geq 1$ the following holds:

$$
\begin{aligned}
& \min _{\hat{U}: \hat{U} \rightarrow X^{n} \rightarrow Y^{n}} \lambda H\left(Z^{n} \mid \hat{U}\right)-H\left(Y^{n} \mid \hat{U}\right) \\
& \quad=n\left(\min _{U: U \rightarrow X \rightarrow Y} \lambda H(Z \mid U)-H(Y \mid U)\right) .
\end{aligned}
$$

Proof sketch

- Taking i.i.d. copies of the minimizer of the right hand side, left hand side is at most the value of right hand side.
- The other direction follows from Markov chain $\left(\hat{U}, Y_{i+1}^{n}, Z^{i-1}\right) \rightarrow X_{i} \rightarrow\left(Y_{i}, Z_{i}\right)$ and Körner-Marton identity.

Conditions for lower bound to be tight

Lemma 2

The lower bound for the weighted sum-rate $R_{X}+\lambda R_{Y}$, for $\lambda \geq 1$ given in Theorem 1 is optimal, i.e. matches the weighted sum-rate of the capacity region, if either of the following conditions hold:
(i) $\left.\mathfrak{C}_{\mu(x)}[H(Y)-\lambda H(Z)]\right|_{p(x)}=H(Y)-\lambda H(Z)$ and Y is independent of Z,
(ii) $\left.\mathfrak{C}_{\mu(x)}[H(Y)-\lambda H(Z)]\right|_{p(x)}=H(Y \mid X)-\lambda H(Z \mid X)$.

Further if condition (i) holds for some $\lambda_{1}>1$, then it will also hold for $1 \leq \lambda \leq \lambda_{1}$; and if condition (ii) holds for some $\lambda_{2} \geq 1$, then it will also hold for $\lambda \geq \lambda_{2}$.

Conditions for lower bound to be tight

Lemma 2

The lower bound for the weighted sum-rate $R_{X}+\lambda R_{Y}$, for $\lambda \geq 1$ given in Theorem 1 is optimal, i.e. matches the weighted sum-rate of the capacity region, if either of the following conditions hold:
(i) $\left.\mathfrak{C}_{\mu(x)}[H(Y)-\lambda H(Z)]\right|_{p(x)}=H(Y)-\lambda H(Z)$ and Y is independent of Z,
(ii) $\left.\mathfrak{C}_{\mu(x)}[H(Y)-\lambda H(Z)]\right|_{p(x)}=H(Y \mid X)-\lambda H(Z \mid X)$.

Further if condition (i) holds for some $\lambda_{1}>1$, then it will also hold for $1 \leq \lambda \leq \lambda_{1}$; and if condition (ii) holds for some $\lambda_{2} \geq 1$, then it will also hold for $\lambda \geq \lambda_{2}$.

Remark:

A relatively easier condition to verify is the convexity of $H(Y)-\lambda H(Z)$ with respect to the distribution of X.

Application to binary alphabets GF(2)

Notation: We will parameterize the space of distributions over pairs of binary alphabets, $p(x, y)$ as follows:
$P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$.

Application to binary alphabets GF(2)

Notation: We will parameterize the space of distributions over pairs of binary alphabets, $p(x, y)$ as follows:
$P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$.

Proposition 1: Optimality of Slepian-Wolf region

The optimal weighted sum-rate of the capacity region is given by the Slepian Wolf region if any of the following conditions hold:
(i) For any λ, if $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right) \leq 0$, or

$$
\text { (ii) } \lambda \geq\left(\frac{c-\bar{d}}{c-d}\right)^{2}, c \neq d, \text { and }\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right)>0
$$

where $\bar{d}=1-d$.

Application to binary alphabets GF(2)

Notation: We will parameterize the space of distributions over pairs of binary alphabets, $p(x, y)$ as follows:
$P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$.

Proposition 1: Optimality of Slepian-Wolf region

The optimal weighted sum-rate of the capacity region is given by the Slepian Wolf region if any of the following conditions hold:
(i) For any λ, if $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right) \leq 0$, or
(ii) $\lambda \geq\left(\frac{c-\bar{d}}{c-d}\right)^{2}, c \neq d$, and $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right)>0$.
where $\bar{d}=1-d$.

Remarks:
(i) The condition (i) above is already known and stated as exercise 16.23 page 390 of Csiszár and Körner's book. One can verify that that $H(Z) \geq H(Y)$ is equivalent to $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right) \leq 0$.
(ii) Note that an equivalent proposition can also be stated for the alternate parameterization: $P(Y=0)=y, P(X=0 \mid Y=0)=\hat{c}, P(X=1 \mid Y=1)=\hat{d}$.

Application to binary alphabets GF(2)

Proposition 2: Optimality of linear codes

Let $P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$ where $x=\frac{\sqrt{d \bar{d}}}{\sqrt{d \bar{d}}+\sqrt{c \bar{c}}}$. The optimal weighted sum-rate of the capacity region is given by the Körner-Marton region, i.e. using linear codes, if any of the following conditions hold:
(i) For any λ, if $c=d$, or
(ii) $1 \leq \lambda \leq \lambda_{1}, c \neq d$, and $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right)>0$, where λ_{1} is the larger root of the quadratic equation

$$
\lambda^{2}(c-d)^{2}+\lambda\left(2(c-d)(c-\bar{d})-4 d \bar{d}(c-\bar{c})^{2}\right)+(c-\bar{d})^{2}=0
$$

where $\bar{d}=1-d, \bar{c}=1-c$.

Application to binary alphabets GF(2)

Proposition 2: Optimality of linear codes

Let $P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$ where $x=\frac{\sqrt{d \bar{d}}}{\sqrt{d \bar{d}}+\sqrt{c \bar{c}}}$.
The optimal weighted sum-rate of the capacity region is given by the Körner-Marton region, i.e. using linear codes, if any of the following conditions hold:
(i) For any λ, if $c=d$, or
(ii) $1 \leq \lambda \leq \lambda_{1}, c \neq d$, and $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right)>0$, where λ_{1} is the larger root of the quadratic equation

$$
\lambda^{2}(c-d)^{2}+\lambda\left(2(c-d)(c-\bar{d})-4 d \bar{d}(c-\bar{c})^{2}\right)+(c-\bar{d})^{2}=0 .
$$

where $\bar{d}=1-d, \bar{c}=1-c$.
Remarks:
(i) As long as $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right)>0$ and $x=\frac{\sqrt{d \bar{d}}}{\sqrt{d \bar{d}}+\sqrt{c \bar{c}}}$, the optimal sum-rate will be given by the Körner-Marton region, i.e. using linear codes.
(ii) An equivalent Proposition can also be stated for the alternate parameterization $P(Y=0)=y, P(X=0 \mid Y=0)=\hat{c}, P(X=1 \mid Y=1)=\hat{d}$.

Application to binary alphabets $\mathrm{GF}(2)$

Notation: $P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$.

Known results: Optimality of weighted sum rates.
When $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right) \leq 0$,
When $c=d$,

Application to binary alphabets GF(2)

Notation: $P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$.

Our work: When $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right)>0$,

Example 1: $c=0.9, d=0.6$

Application to binary alphabets GF(2)

Notation: $P(X=0)=x, P(Y=0 \mid X=0)=c, P(Y=1 \mid X=1)=d$.

Our work: When $\left(c-\frac{1}{2}\right)\left(d-\frac{1}{2}\right)>0$,

Example 2: $c=0.7, d=0.6$

Comparison of the bounds

In [Ahlswede-Han 83'], Ahlswede and Han chose the following $p(x, y)$ given by

$$
p(x, y)=\left[\begin{array}{ll}
0.003920 & 0.019920 \\
0.976080 & 0.000080
\end{array}\right]
$$

Application to higher alphabet fields

Example 1

For $G F(3)$, one instance of $p(x, y)$ satisfying that Z is independent of Y and $\left.\mathfrak{C}_{\mu(x)}[H(Y)-H(Z)]\right|_{p(x)}=H(Y)-H(Z)$ is given by the following distribution:

$$
p(x, y)=\left[\begin{array}{lll}
0.08 & 0.06 & 0.18 \\
0.08 & 0.18 & 0.06 \\
0.24 & 0.06 & 0.06
\end{array}\right]
$$

Application to higher alphabet fields

Example 1

For $G F(3)$, one instance of $p(x, y)$ satisfying that Z is independent of Y and $\left.\mathfrak{C}_{\mu(x)}[H(Y)-H(Z)]\right|_{p(x)}=H(Y)-H(Z)$ is given by the following distribution:

$$
p(x, y)=\left[\begin{array}{lll}
0.08 & 0.06 & 0.18 \\
0.08 & 0.18 & 0.06 \\
0.24 & 0.06 & 0.06
\end{array}\right]
$$

Example 2

One instance of $p(x, y)$ satisfying $\left.\mathfrak{C}_{\mu(x)}[H(Y)-H(Z)]\right|_{p(x)}=H(Y \mid X)-H(Z \mid X)$ is given by the following distribution:

$$
p(x, y)=\left[\begin{array}{lll}
0.02 & 0.02 & 0.48 \\
0.02 & 0.06 & 0.16 \\
0.06 & 0.02 & 0.16
\end{array}\right]
$$

Related open problems

Here is a conjecture verified by numerical simulations by different groups of researchers.

Conjecture [Sefidgaran-Gohari-Reza 15’]
For binary random variables X, Y, U, and V that satisfy the Markov chain $U-X-Y-V$, and for $Z=X \oplus Y$, we have

$$
I(X, Y ; U, V)+2 H(X \mid U, V) \geq \min \{H(X, Y), 2 H(Z)\}
$$

If the conjecture is true, the smallest sum-rate yielded by Ahlswede-Han region is indeed the minimum of $\{H(X Y), 2 H(Z)\}$, i.e. the minimum of the Slepian-Wolf region and the Körner-Marton region.

Related open problems

Here is a conjecture verified by numerical simulations by different groups of researchers.

Conjecture [Sefidgaran-Gohari-Reza 15’]
For binary random variables X, Y, U, and V that satisfy the Markov chain $U-X-Y-V$, and for $Z=X \oplus Y$, we have

$$
I(X, Y ; U, V)+2 H(X \mid U, V) \geq \min \{H(X, Y), 2 H(Z)\}
$$

If the conjecture is true, the smallest sum-rate yielded by Ahlswede-Han region is indeed the minimum of $\{H(X Y), 2 H(Z)\}$, i.e. the minimum of the Slepian-Wolf region and the Körner-Marton region.

Another open problem is whether this lower bound can be applied to Gaussian Distributed Source Coding with distortion criterion?

References

- D. Slepian and J. Wolf, Noiseless coding of correlated information sources, IEEE Transactions on Information Theory, vol. 19(4), pp. 471-480, July 1973.
- J. Körner and K. Marton, How to encode the modulo-two sum of binary sources (corresp.), IEEE Transactions on Information Theory, vol. 25, no. 2, pp. 219-221, Mar 1979.
- I. Csiszár and J. Körner, Information theory: Coding theorems fordiscrete memoryless systems. Cambridge University Press, 12011.
- R. Ahlswede and T. S. Han, On source coding with side information via a multiple-access channel and related problems in multi-user information theory, Information Theory, IEEE Transactions on, vol. 29, pp. 396-412, 061983.
- T. S. Han and K. Kobayashi, A dichotomy of functions $f(x, y)$ of correlated sources (x, y) from the viewpoint of the achievable rate region, IEEE Transactions on Information Theory, vol. 33, no. 1, pp. 69-76, Jan. 1987.
- M. Sefidgaran, A. Gohari, and M. R. Aref, On Körner-Marton's sum modulo two problem, in 2015 Iran Workshop on Communication and Information Theory (IWCIT), May 2015, pp. 1-6.
- C. Nair, Upper concave envelopes and auxiliary random variables, International Journal of Advances in Engineering Sciences and Applied Mathematics, vol. 5, no. 1, pp. 12-20, 2013. [Online]. Available: http://dx.doi.org/10.1007/s12572-013-0081-7
- C. Nair, Capacity regions of two new classes of two-receiver broadcast channels, IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4207-4214, Sept 2010.

[^0]: ${ }^{1}$ I. Csiszár and J. Körner, Information theory: Coding theorems for discrete memoryless systems

[^1]: ${ }^{1}$ I. Csiszár and J. Körner, Information theory: Coding theorems for discrete memoryless systems

