On the structure of certain non-convex functionals and the Gaussian Z-interference channel

 $Max Costa^1$ Chandra Nair² David Ng^2 Yan Nan $Wang^2$

 $^1 \mathrm{University}$ of Campinas

 $^2 \mathrm{The}$ Chinese University of Hong Kong

June 2020

• An interference channel (IC) models the situation of two mutually interfering point-to-point communications over a shared medium. Formally, a memoryless interference channel is defined by a stochastic map $W(y_1, y_2|x_1, x_2)$.

- An interference channel (IC) models the situation of two mutually interfering point-to-point communications over a shared medium. Formally, a memoryless interference channel is defined by a stochastic map $W(y_1, y_2|x_1, x_2)$.
- We are in particular interested to the Gaussian Z-interference channel (GZIC) setting as depicted below, where $a \in (0, 1)$. (If $a \ge 1$ this setting becomes strong interference and the capacity region is known [Costa '85])

- An interference channel (IC) models the situation of two mutually interfering point-to-point communications over a shared medium. Formally, a memoryless interference channel is defined by a stochastic map $W(y_1, y_2|x_1, x_2)$.
- We are in particular interested to the Gaussian Z-interference channel (GZIC) setting as depicted below, where $a \in (0, 1)$. (If $a \ge 1$ this setting becomes strong interference and the capacity region is known [Costa '85])

Gaussian Z-interference channel

 $Y_1 = X_1 + Z_1$ $Y_2 = X_2 + aX_1 + Z_2$

where $Z_1, Z_2 \sim \mathcal{N}(0, 1)$ independent of X_1 and X_2 .

• We consider an equivalent formulation of the k-letter form of GZIC:

• We consider an equivalent formulation of the k-letter form of GZIC:

Gaussian Z-interference channel

 $\begin{aligned} \mathbf{Y}_1 &= \mathbf{X}_1 + \mathbf{Z}_1 \\ \mathbf{Y}_2 &= \mathbf{X}_2 + \mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2 \end{aligned}$

where $\mathbf{Z}_1 \sim \mathcal{N}(0, I)$, $\mathbf{Z}_2 \sim \mathcal{N}(0, N_2 I)$ (where $N_2 := \frac{1}{a^2} - 1$, $a \in (0, 1)$) and $\mathbf{X}_i, \mathbf{Y}_i, \mathbf{Z}_i$ (i = 1, 2) are random variables in \mathbb{R}^k ($k \ge 1$), under the power constraints

 $E[\|\mathbf{X}_1\|^2] \le kP_1$ $E[\|\mathbf{X}_2\|^2] \le kP_2$

where $P_1, P_2 \ge 0$.

• For general two-user interference channel Han–Kobayashi (HK) region [Han, Kobayashi '81] is the best achievable region known.

- For general two-user interference channel Han–Kobayashi (HK) region [Han, Kobayashi '81] is the best achievable region known.
- HK region is known to be strictly suboptimal for some discrete channels. In particular the HK region is strictly improved by multi-letter extensions. [Nair, Xia, Yazdanpanah '15]

- For general two-user interference channel Han–Kobayashi (HK) region [Han, Kobayashi '81] is the best achievable region known.
- HK region is known to be strictly suboptimal for some discrete channels. In particular the HK region is strictly improved by multi-letter extensions. [Nair, Xia, Yazdanpanah '15]
- For GZIC with Gaussian inputs multi-letter extension does not improve. [Nair, Ng '19]

- For general two-user interference channel Han–Kobayashi (HK) region [Han, Kobayashi '81] is the best achievable region known.
- HK region is known to be strictly suboptimal for some discrete channels. In particular the HK region is strictly improved by multi-letter extensions. [Nair, Xia, Yazdanpanah '15]
- For GZIC with Gaussian inputs multi-letter extension does not improve. [Nair, Ng '19]
- Question: Is k-letter HK region for $GZIC \stackrel{?}{=} k$ -letter HK region for GZIC with Gaussian inputs? i.e.

 $\mathcal{R}_{\mathrm{HK}}^{(k)}(P_1, P_2) \stackrel{?}{=} \mathcal{R}_{\mathrm{HK-GS}}^{(k)}(P_1, P_2)$

- For general two-user interference channel Han–Kobayashi (HK) region [Han, Kobayashi '81] is the best achievable region known.
- HK region is known to be strictly suboptimal for some discrete channels. In particular the HK region is strictly improved by multi-letter extensions. [Nair, Xia, Yazdanpanah '15]
- For GZIC with Gaussian inputs multi-letter extension does not improve. [Nair, Ng '19]
- Question: Is k-letter HK region for $GZIC \stackrel{?}{=} k$ -letter HK region for GZIC with Gaussian inputs? i.e.

$$\mathcal{R}_{\mathrm{HK}}^{(k)}(P_1, P_2) \stackrel{?}{=} \mathcal{R}_{\mathrm{HK-GS}}^{(k)}(P_1, P_2)$$

• If so then the single-letter HK region with Gaussian inputs $\mathcal{R}_{HK-GS}^{(1)}(P_1, P_2)$ is the capacity.

Han–Kobayashi region for GZIC

• For our GZIC the HK region reads:

k-letter HK region for GZIC

 $kR_{1} \leq h(\mathbf{X}_{1} + \mathbf{Z}_{1}|\mathbf{Q}) - h(\mathbf{Z}_{1})$ $kR_{2} \leq h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q}) - h(\mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q})$ $k(R_{1} + R_{2}) \leq h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{Q}) - h(\mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q})$ $+ h(\mathbf{X}_{1} + \mathbf{Z}_{1}|\mathbf{U}_{1}, \mathbf{Q}) - h(\mathbf{Z}_{1})$

where $\mathbf{Z}_1 \sim \mathcal{N}(0, I)$ and $\mathbf{Z}_2 \sim \mathcal{N}(0, N_2 I)$.

Han-Kobayashi region for GZIC

• For our GZIC the HK region reads:

k-letter HK region for GZIC

 $kR_{1} \leq h(\mathbf{X}_{1} + \mathbf{Z}_{1}|\mathbf{Q}) - h(\mathbf{Z}_{1})$ $kR_{2} \leq h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q}) - h(\mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q})$ $k(R_{1} + R_{2}) \leq h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{Q}) - h(\mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q})$ $+ h(\mathbf{X}_{1} + \mathbf{Z}_{1}|\mathbf{U}_{1}, \mathbf{Q}) - h(\mathbf{Z}_{1})$

where $\mathbf{Z}_1 \sim \mathcal{N}(0, I)$ and $\mathbf{Z}_2 \sim \mathcal{N}(0, N_2 I)$.

• $(R_1, R_2) \in \mathcal{R}_{HK}^{(k)}(P_1, P_2)$ if there exists $p(\mathbf{q})p(\mathbf{u}_1, \mathbf{x}_1|\mathbf{q})p(\mathbf{x}_2|\mathbf{q})$ satisfying the above three inequalities, along with $\mathbb{E}[||\mathbf{X}_i||^2] \leq kP_i$ (i = 1, 2).

Han–Kobayashi region for GZIC

• For our GZIC the HK region reads:

k-letter HK region for GZIC

 $kR_{1} \leq h(\mathbf{X}_{1} + \mathbf{Z}_{1}|\mathbf{Q}) - h(\mathbf{Z}_{1})$ $kR_{2} \leq h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q}) - h(\mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q})$ $k(R_{1} + R_{2}) \leq h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{Q}) - h(\mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}|\mathbf{U}_{1}, \mathbf{Q})$ $+ h(\mathbf{X}_{1} + \mathbf{Z}_{1}|\mathbf{U}_{1}, \mathbf{Q}) - h(\mathbf{Z}_{1})$

where $\mathbf{Z}_1 \sim \mathcal{N}(0, I)$ and $\mathbf{Z}_2 \sim \mathcal{N}(0, N_2 I)$.

- $(R_1, R_2) \in \mathcal{R}_{HK}^{(k)}(P_1, P_2)$ if there exists $p(\mathbf{q})p(\mathbf{u}_1, \mathbf{x}_1|\mathbf{q})p(\mathbf{x}_2|\mathbf{q})$ satisfying the above three inequalities, along with $E[||\mathbf{X}_i||^2] \leq kP_i$ (i = 1, 2).
- $(R_1, R_2) \in \mathcal{R}_{HK-GS}^{(k)}(P_1, P_2)$ if there exists $p(\mathbf{q})p(\mathbf{u}_1, \mathbf{x}_1|\mathbf{q})p(\mathbf{x}_2|\mathbf{q})$ satisfying the above three inequalities, along with $\mathbb{E}[||\mathbf{X}_i||^2] \leq kP_i$ (i = 1, 2), with $\mathbf{U}_1, \mathbf{X}_1 \mathbf{U}_1$, \mathbf{X}_2 being independent zero-mean Gaussians conditioned on \mathbf{Q} (i.e. with Gaussian inputs).

Han–Kobayashi region for GZIC: Remarks

• It is known that the time-sharing variable \mathbf{Q} strictly improves on the HK region without time-sharing, i.e. under power constraints the optimal distribution for $(\mathbf{X}_1, \mathbf{X}_2)$ when \mathbf{Q} is constant is not Gaussian but *mixture of Gaussian* instead.

Han–Kobayashi region for GZIC: Remarks

• It is known that the time-sharing variable \mathbf{Q} strictly improves on the HK region without time-sharing, i.e. under power constraints the optimal distribution for $(\mathbf{X}_1, \mathbf{X}_2)$ when \mathbf{Q} is constant is not Gaussian but *mixture of Gaussian* instead.

• The traditional "monotonicity along a path" approach [Stam '59] for proving Gaussian optimality of non-convex functionals hence fails.

Han–Kobayashi region for GZIC: Remarks

• It is known that the time-sharing variable \mathbf{Q} strictly improves on the HK region without time-sharing, i.e. under power constraints the optimal distribution for $(\mathbf{X}_1, \mathbf{X}_2)$ when \mathbf{Q} is constant is not Gaussian but *mixture of Gaussian* instead.

• The traditional "monotonicity along a path" approach [Stam '59] for proving Gaussian optimality of non-convex functionals hence fails.

• This motivates us to consider certain Fenchel dual functional which we conjectured to be optimized by Gaussian.

Gaussian optimality conjecture

 In this paper we propose the following conjecture concerning Gaussian optimality of certain functional, which if true would imply that *R*^(k)_{HK}(*P*₁, *P*₂) = *R*^(k)_{HK-GS}(*P*₁, *P*₂) and hence would solve the capacity of GZIC.

Gaussian optimality conjecture

• In this paper we propose the following conjecture concerning Gaussian optimality of certain functional, which if true would imply that $\mathcal{R}_{\mathrm{HK}}^{(k)}(P_1, P_2) = \mathcal{R}_{\mathrm{HK-GS}}^{(k)}(P_1, P_2)$ and hence would solve the capacity of GZIC.

Conjecture 1

For $\beta \geq 1$, $N_2 \geq 0$ and $k \times k$ matrices $\Sigma_1, A_2 \succeq 0$, the maximum

$$\max_{\substack{p(\mathbf{x}_1)p(\mathbf{x}_2)\\ \mathrm{E}[\mathbf{X}_2\mathbf{X}_2^T] \leq A_2}} \left[(\beta - 1)h(\mathbf{X}_2 + \mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) + h(\mathbf{X}_1 + \mathbf{Z}_1) - \beta h(\mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) - \operatorname{tr}(\Sigma_1 \operatorname{E}[\mathbf{X}_1\mathbf{X}_1^T]) \right]$$

where $\mathbf{Z}_1 \sim \mathcal{N}(0, I)$, $\mathbf{Z}_2 \sim \mathcal{N}(0, N_2 I)$ and $\mathbf{X}_i, \mathbf{Z}_i$ (i = 1, 2) are random variables in \mathbb{R}^k $(k \ge 1)$, is attained by Gaussian \mathbf{X}_1 and \mathbf{X}_2 .

Gaussian optimality conjecture

• In this paper we propose the following conjecture concerning Gaussian optimality of certain functional, which if true would imply that $\mathcal{R}_{\mathrm{HK}}^{(k)}(P_1, P_2) = \mathcal{R}_{\mathrm{HK-GS}}^{(k)}(P_1, P_2)$ and hence would solve the capacity of GZIC.

Conjecture 1

For $\beta \geq 1$, $N_2 \geq 0$ and $k \times k$ matrices $\Sigma_1, A_2 \succeq 0$, the maximum

$$\max_{\substack{p(\mathbf{x}_1)p(\mathbf{x}_2)\\ \mathrm{E}[\mathbf{X}_2\mathbf{X}_2^T] \leq A_2}} \left[(\beta - 1)h(\mathbf{X}_2 + \mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) + h(\mathbf{X}_1 + \mathbf{Z}_1) - \beta h(\mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) - \operatorname{tr}(\Sigma_1 \operatorname{E}[\mathbf{X}_1\mathbf{X}_1^T]) \right]$$

where $\mathbf{Z}_1 \sim \mathcal{N}(0, I)$, $\mathbf{Z}_2 \sim \mathcal{N}(0, N_2 I)$ and $\mathbf{X}_i, \mathbf{Z}_i$ (i = 1, 2) are random variables in \mathbb{R}^k $(k \ge 1)$, is attained by Gaussian \mathbf{X}_1 and \mathbf{X}_2 .

• In the following sessions we will show how does this conjecture imply the optimality of Gaussian inputs.

With a duality argument as in [Costa, Nair '16] for $\beta \ge 1$ and $Q_1, Q_2 \ge 0$ we have

$$\max_{\mathcal{R}_{\text{HK}}^{(k)}(Q_1,Q_2)} k(R_1 + \beta R_2) = \mathcal{C}_{Q_1,Q_2} \left[\max_{\substack{p(\mathbf{x}_1)p(\mathbf{x}_2)\\ \text{E}[\|\mathbf{X}_1\|^2] \le kQ_1\\ \text{E}[\|\mathbf{X}_2\|^2] \le kQ_2}} f_{\beta,\text{GS}}(K_1, K_2) \right]$$

$$\max_{\mathcal{R}_{\text{HK-GS}}^{(k)}(Q_1,Q_2)} k(R_1 + \beta R_2) = \mathcal{C}_{Q_1,Q_2} \left[\max_{\substack{K_1,K_2 \succeq 0\\ \text{tr}(K_1) \le kQ_1\\ \text{tr}(K_2) \le kQ_2}} f_{\beta,\text{GS}}(K_1, K_2) \right]$$

With a duality argument as in [Costa, Nair '16] for $\beta \ge 1$ and $Q_1, Q_2 \ge 0$ we have

$$\max_{\mathcal{R}_{\text{HK}}^{(k)}(Q_1,Q_2)} k(R_1 + \beta R_2) = \mathcal{C}_{Q_1,Q_2} \left[\max_{\substack{p(\mathbf{x}_1)p(\mathbf{x}_2)\\ E[\|\mathbf{X}_1\|^2] \le kQ_1\\ E[\|\mathbf{X}_1\|^2] \le kQ_2}} f_{\beta}(\mathbf{X}_1, \mathbf{X}_2) \right]$$

$$\max_{\mathcal{R}_{\text{HK-GS}}^{(k)}(Q_1,Q_2)} k(R_1 + \beta R_2) = \mathcal{C}_{Q_1,Q_2} \left[\max_{\substack{K_1,K_2 \succeq 0\\ \text{tr}(K_1) \le kQ_1\\ \text{tr}(K_2) \le kQ_2}} f_{\beta,\text{GS}}(K_1, K_2) \right]$$

where

$$f_{\beta}(\mathbf{X}_{1}, \mathbf{X}_{2}) := h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}) - h(\mathbf{Z}_{1}) + \mathcal{C}_{\mathbf{X}_{1}} \left[\psi(\mathbf{X}_{1}, \mathbf{X}_{2}) \right]$$
$$f_{\beta, \mathrm{GS}}(K_{1}, K_{2}) := \frac{1}{2} \log |K_{2} + K_{1} + I + N_{2}I| + \max_{\substack{\hat{K}_{1} \succeq 0 \\ \hat{K}_{1} \preceq K_{1}}} \psi_{\mathrm{G}}(\hat{K}_{1}, K_{2})$$

With a duality argument as in [Costa, Nair '16] for $\beta \geq 1$ and $Q_1, Q_2 \geq 0$ we have

$$\max_{\mathcal{R}_{\text{HK}}^{(k)}(Q_1,Q_2)} k(R_1 + \beta R_2) = \mathcal{C}_{Q_1,Q_2} \left[\max_{\substack{p(\mathbf{x}_1)p(\mathbf{x}_2)\\ \text{E}[\|\mathbf{X}_1\|^2] \le kQ_1\\ \text{E}[\|\mathbf{X}_1\|^2] \le kQ_2}} f_{\beta}(\mathbf{X}_1, \mathbf{X}_2) \right]$$

$$\max_{\mathcal{R}_{\text{HK-GS}}^{(k)}(Q_1,Q_2)} k(R_1 + \beta R_2) = \mathcal{C}_{Q_1,Q_2} \left[\max_{\substack{K_1,K_2 \succeq 0\\ \text{tr}(K_1) \le kQ_1\\ \text{tr}(K_2) \le kQ_2}} f_{\beta,\text{GS}}(K_1, K_2) \right]$$

where

$$f_{\beta}(\mathbf{X}_{1}, \mathbf{X}_{2}) := h(\mathbf{X}_{2} + \mathbf{X}_{1} + \mathbf{Z}_{1} + \mathbf{Z}_{2}) - h(\mathbf{Z}_{1}) + \mathcal{C}_{\mathbf{X}_{1}} \left[\psi(\mathbf{X}_{1}, \mathbf{X}_{2}) \right]$$
$$f_{\beta, \mathrm{GS}}(K_{1}, K_{2}) := \frac{1}{2} \log |K_{2} + K_{1} + I + N_{2}I| + \max_{\substack{\hat{K}_{1} \succeq 0 \\ \hat{K}_{1} \preceq K_{1}}} \psi_{\mathrm{G}}(\hat{K}_{1}, K_{2})$$

and

$$\psi(\mathbf{X}_1, \mathbf{X}_2) := (\beta - 1)h(\mathbf{X}_2 + \mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) + h(\mathbf{X}_1 + \mathbf{Z}_1) - \beta h(\mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2)$$

$$\psi_{\mathbf{G}}(K_1, K_2) := \frac{1}{2} \Big[(\beta - 1) \log |K_2 + K_1 + I + N_2 I| + \log |K_1 + I| - \beta \log |K_1 + I + N_2 I| \Big]$$

• Making use of the above dual functional characterization one sees that to prove $\mathcal{R}_{HK}^{(k)}(P_1, P_2) = \mathcal{R}_{HK-GS}^{(k)}(P_1, P_2)$ it suffices to show

$$\mathcal{C}_{\mathbf{X}_1}\left[\psi(\mathbf{X}_1, \mathbf{X}_2)\right] \le \max_{\substack{\hat{K}_1 \succeq 0\\\hat{K}_1 \preceq K_1}} \psi_{\mathrm{G}}(\hat{K}_1, K_2)$$

with $K_i = \mathbb{E}[\mathbf{X}_i \mathbf{X}_i^T]$ (i = 1, 2).

• Making use of the above dual functional characterization one sees that to prove $\mathcal{R}_{HK}^{(k)}(P_1, P_2) = \mathcal{R}_{HK-GS}^{(k)}(P_1, P_2)$ it suffices to show

$$\mathcal{C}_{\mathbf{X}_1}\left[\psi(\mathbf{X}_1, \mathbf{X}_2)\right] \le \max_{\substack{\hat{K}_1 \succeq 0\\ \hat{K}_1 \preceq K_1}} \psi_{\mathrm{G}}(\hat{K}_1, K_2)$$

with $K_i = \mathbb{E}[\mathbf{X}_i \mathbf{X}_i^T]$ (i = 1, 2).

• Our proposed conjecture instead implies that

 $\mathcal{C}_{\mathbf{X}_1}\big[\psi(\mathbf{X}_1,\mathbf{X}_2)\big] \le \mathcal{C}_{K_1}\big[\psi_{\mathbf{G}}(K_1,K_2)\big]$

• Making use of the above dual functional characterization one sees that to prove $\mathcal{R}_{HK}^{(k)}(P_1, P_2) = \mathcal{R}_{HK-GS}^{(k)}(P_1, P_2)$ it suffices to show

$$\mathcal{C}_{\mathbf{X}_1}\left[\psi(\mathbf{X}_1, \mathbf{X}_2)\right] \le \max_{\substack{\hat{K}_1 \succeq 0\\ \hat{K}_1 \preceq K_1}} \psi_{\mathrm{G}}(\hat{K}_1, K_2)$$

with $K_i = \mathbb{E}[\mathbf{X}_i \mathbf{X}_i^T]$ (i = 1, 2).

• Our proposed conjecture instead implies that

 $\mathcal{C}_{\mathbf{X}_1}\left[\psi(\mathbf{X}_1, \mathbf{X}_2)\right] \le \mathcal{C}_{K_1}\left[\psi_{\mathrm{G}}(K_1, K_2)\right]$

• It is *not* in general true for all functionals ϕ that

$$\mathcal{C}_{K_1}[\phi(K_1)] \le \max_{0 \le \hat{K}_1 \le K_1} \phi(\hat{K}_1)$$

(although " \geq " always holds under certain regularity conditions). However we can show that the functional $K_1 \mapsto \psi_G(K_1, K_2)$ has such property and this implies the sufficiency of our conjecture.

Costa-Nair-Ng-Wang

GZIC functionals

Theorem 1

Let $\beta \geq 1$ and $N_2 \geq 0$. Define

 $\psi_{\mathcal{G}}(K_1, K_2) := \frac{1}{2} \left[(\beta - 1) \log |K_2 + K_1 + I + N_2 I| + \log |K_1 + I| - \beta \log |K_1 + I + N_2 I| \right]$

for $k \times k$ $(k \ge 1)$ matrices $K_1, K_2 \succeq 0$. Then it holds that

$$\mathcal{C}_{K_1} \big[\psi_{\mathcal{G}}(K_1, K_2) \big] = \max_{\substack{\hat{K}_1 \succeq 0 \\ \hat{K}_1 \preceq K_1}} \psi_{\mathcal{G}}(\hat{K}_1, K_2)$$

for any $K_1, K_2 \succeq 0$.

$$\mathcal{C}_{K_1}\left[\psi_{\mathcal{G}}(K_1, K_2)\right] = \inf_{\substack{\Sigma_1 \\ \Sigma_1 = \Sigma_1^T}} \left[\underbrace{\sup_{\hat{K}_1 \succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_1, K_2) - \operatorname{tr}(\Sigma_1 \hat{K}_1)\right]}_{= +\infty \text{ if } \Sigma_1 \not\succeq 0} + \operatorname{tr}(\Sigma_1 K_1) \right]$$

$$\mathcal{C}_{K_1} \left[\psi_{\mathcal{G}}(K_1, K_2) \right] = \inf_{\substack{\Sigma_1 \\ \Sigma_1 = \Sigma_1^T}} \left[\underbrace{\sup_{\hat{K}_1 \succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_1, K_2) - \operatorname{tr}(\Sigma_1 \hat{K}_1) \right]}_{= +\infty \text{ if } \Sigma_1 \not\geq 0} + \operatorname{tr}(\Sigma_1 K_1) \right] \\ = \inf_{\sum_1 \succeq 0} \left[\sup_{\hat{K}_1 \succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_1, K_2) - \operatorname{tr}(\Sigma_1 \hat{K}_1) \right] + \operatorname{tr}(\Sigma_1 K_1) \right] \right]$$

$$\mathcal{C}_{K_{1}}\left[\psi_{\mathcal{G}}(K_{1},K_{2})\right] = \inf_{\substack{\Sigma_{1} \\ \Sigma_{1}=\Sigma_{1}^{T}}} \left[\sup_{\substack{\hat{K}_{1}\succeq 0 \\ \hat{K}_{1}\succeq 0}} \left[\psi_{\mathcal{G}}(\hat{K}_{1},K_{2}) - \operatorname{tr}(\Sigma_{1}\hat{K}_{1})\right] + \operatorname{tr}(\Sigma_{1}K_{1}) \right]$$
$$= \inf_{\sum_{1}\succeq 0} \left[\sup_{\hat{K}_{1}\succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_{1},K_{2}) - \operatorname{tr}(\Sigma_{1}\hat{K}_{1})\right] + \operatorname{tr}(\Sigma_{1}K_{1}) \right]$$
$$\geq \sup_{\hat{K}_{1}\succeq 0} \underbrace{\inf_{\sum_{1}\succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_{1},K_{2}) - \operatorname{tr}(\Sigma_{1}\hat{K}_{1}) + \operatorname{tr}(\Sigma_{1}K_{1})\right]}_{= -\infty \text{ if } K_{1} - \hat{K}_{1} \not\succeq 0} \right]$$

$$\begin{aligned} \mathcal{C}_{K_{1}} \big[\psi_{\mathcal{G}}(K_{1}, K_{2}) \big] &= \inf_{\substack{\Sigma_{1} \\ \Sigma_{1} = \Sigma_{1}^{T}}} \left[\underbrace{\sup_{\hat{K}_{1} \succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_{1}, K_{2}) - \operatorname{tr}(\Sigma_{1} \hat{K}_{1}) \right] + \operatorname{tr}(\Sigma_{1} K_{1}) \right]}_{&= +\infty \text{ if } \Sigma_{1} \succeq 0} \\ &= \inf_{\sum_{1} \succeq 0} \left[\sup_{\hat{K}_{1} \succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_{1}, K_{2}) - \operatorname{tr}(\Sigma_{1} \hat{K}_{1}) \right] + \operatorname{tr}(\Sigma_{1} K_{1}) \right] \\ &\geq \sup_{\hat{K}_{1} \succeq 0} \underbrace{\inf_{\sum_{1} \succeq 0} \left[\psi_{\mathcal{G}}(\hat{K}_{1}, K_{2}) - \operatorname{tr}(\Sigma_{1} \hat{K}_{1}) + \operatorname{tr}(\Sigma_{1} K_{1}) \right]}_{&= -\infty \text{ if } K_{1} - \hat{K}_{1} \succeq 0} \end{aligned}$$

• Recall that we have defined

 $\psi(\mathbf{X}_1, \mathbf{X}_2) := (\beta - 1)h(\mathbf{X}_2 + \mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) + h(\mathbf{X}_1 + \mathbf{Z}_1) - \beta h(\mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2)$

and so $\psi(\mathbf{X}_1, \mathbf{X}_2) = \psi_{\mathrm{G}}(K_1, K_2)$ for $\mathbf{X}_i \sim \mathcal{N}(0, K_i)$ (i = 1, 2).

• Recall that we have defined

 $\psi(\mathbf{X}_1, \mathbf{X}_2) := (\beta - 1)h(\mathbf{X}_2 + \mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) + h(\mathbf{X}_1 + \mathbf{Z}_1) - \beta h(\mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2)$

and so $\psi(\mathbf{X}_1, \mathbf{X}_2) = \psi_G(K_1, K_2)$ for $\mathbf{X}_i \sim \mathcal{N}(0, K_i)$ (i = 1, 2).

• Fixing $K_2 \succeq 0$ and $\mathbf{X}_2 \sim \mathcal{N}(0, K_2)$ we have

$$\mathcal{C}_{K_1}\left[\psi_{\mathcal{G}}(K_1, K_2)\right] \leq \max_{\substack{p(\mathbf{x}_1)p(\mathbf{u}_1|\mathbf{x}_1)\\ \mathcal{E}[\mathbf{X}_1\mathbf{X}_1^T] \preceq K_1}} \mathcal{E}_{\mathbf{U}_1}\left[\psi(\mathbf{X}_1|_{\mathbf{U}_1}, \mathbf{X}_2)\right]$$

since the right hand side is a concave functional in K_1 that upper bounds $\psi_{\rm G}(K_1, K_2)$.

• Recall that we have defined

 $\psi(\mathbf{X}_1, \mathbf{X}_2) := (\beta - 1)h(\mathbf{X}_2 + \mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2) + h(\mathbf{X}_1 + \mathbf{Z}_1) - \beta h(\mathbf{X}_1 + \mathbf{Z}_1 + \mathbf{Z}_2)$

and so $\psi(\mathbf{X}_1, \mathbf{X}_2) = \psi_G(K_1, K_2)$ for $\mathbf{X}_i \sim \mathcal{N}(0, K_i)$ (i = 1, 2).

• Fixing $K_2 \succeq 0$ and $\mathbf{X}_2 \sim \mathcal{N}(0, K_2)$ we have

$$\mathcal{C}_{K_1}\left[\psi_{\mathrm{G}}(K_1, K_2)\right] \leq \max_{\substack{p(\mathbf{x}_1)p(\mathbf{u}_1|\mathbf{x}_1)\\ \mathrm{E}[\mathbf{X}_1\mathbf{X}_1^T] \leq K_1}} \mathrm{E}_{\mathbf{U}_1}\left[\psi(\mathbf{X}_1|_{\mathbf{U}_1}, \mathbf{X}_2)\right]$$

since the right hand side is a concave functional in K_1 that upper bounds $\psi_{\rm G}(K_1, K_2)$.

• It remains the establish the following:

Proposition 1

Let $K_1 \succeq 0$ and let \mathbf{X}_2 be Gaussian. Then the maximum

```
 \max_{\substack{p(\mathbf{x}_1)p(\mathbf{u}_1|\mathbf{x}_1)\\ \mathrm{E}[\mathbf{X}_1\mathbf{X}_1^T] \leq K_1}} \mathrm{E}_{\mathbf{U}_1}[\psi(\mathbf{X}_1|_{\mathbf{U}_1}, \mathbf{X}_2)]
```

is attained by some zero-mean Gaussian \mathbf{X}_1 and constant random variable \mathbf{U}_1 .

• We will show Proposition 1 by a subadditivity argument, applying the "doubling trick" developed in [Geng, Nair '14].

- We will show Proposition 1 by a subadditivity argument, applying the "doubling trick" developed in [Geng, Nair '14].
- Take a maximizer $p^*(\mathbf{x}_1, \mathbf{u}_1)$ (existence of which can be justified by Prokhorov theorem through techniques in Appendix II of [Geng, Nair '14]) for

$$v := \max_{\substack{p(\mathbf{x}_1)p(\mathbf{u}_1|\mathbf{x}_1)\\ \mathrm{E}[\mathbf{X}_1\mathbf{X}_1^T] \preceq K_1}} \mathrm{E}_{\mathbf{U}_1}[\psi(\mathbf{X}_1|_{\mathbf{U}_1}, \mathbf{X}_2)]$$

We can assume without loss of generality $p^*(\mathbf{x}_1|\mathbf{u}_1)$ is zero-mean or otherwise replace \mathbf{X}_1 by $\mathbf{X}_1 - \mathrm{E}[\mathbf{X}_1|\mathbf{U}_1]$.

- We will show Proposition 1 by a subadditivity argument, applying the "doubling trick" developed in [Geng, Nair '14].
- Take a maximizer $p^*(\mathbf{x}_1, \mathbf{u}_1)$ (existence of which can be justified by Prokhorov theorem through techniques in Appendix II of [Geng, Nair '14]) for

$$v := \max_{\substack{p(\mathbf{x}_1)p(\mathbf{u}_1|\mathbf{x}_1)\\ \mathbf{E}[\mathbf{X}_1\mathbf{X}_1^T] \preceq K_1}} \mathbf{E}_{\mathbf{U}_1}[\psi(\mathbf{X}_1|_{\mathbf{U}_1}, \mathbf{X}_2)]$$

We can assume without loss of generality $p^*(\mathbf{x}_1|\mathbf{u}_1)$ is zero-mean or otherwise replace \mathbf{X}_1 by $\mathbf{X}_1 - \mathrm{E}[\mathbf{X}_1|\mathbf{U}_1]$.

• Doubling: Take two independent copies $(\mathbf{X}_{11}^*, \mathbf{U}_{11}^*)$, $(\mathbf{X}_{12}^*, \mathbf{U}_{12}^*)$ of the maximizer. Let

$$\mathbf{X}_{11} := \frac{\mathbf{X}_{11}^* + \mathbf{X}_{12}^*}{\sqrt{2}}, \qquad \mathbf{X}_{12} := \frac{\mathbf{X}_{11}^* - \mathbf{X}_{12}^*}{\sqrt{2}}$$

and $U_1 := (U_{11}^*, U_{12}^*)$. For i = 1, 2 let

$$egin{aligned} \mathbf{Y}_{1i} &:= \mathbf{X}_{1i} + \mathbf{Z}_{1i} \ \mathbf{Y}_{2i} &:= \mathbf{X}_{1i} + \mathbf{Z}_{1i} + \mathbf{Z}_{2i} \ \mathbf{Y}_{3i} &:= \mathbf{X}_{1i} + \mathbf{Z}_{1i} + \mathbf{Z}_{2i} + \mathbf{X}_{2i} \end{aligned}$$

where $(\mathbf{X}_{2i}, \mathbf{Z}_{1i}, \mathbf{Z}_{2i})$ are identically distributed with $(\mathbf{X}_2, \mathbf{Z}_1, \mathbf{Z}_2)$.

Then

2v

Then

 $2v = \mathrm{E}_{\mathbf{U}_{11}^*}[\psi(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*}, \mathbf{X}_2)] + \mathrm{E}_{\mathbf{U}_{12}^*}[\psi(\mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*}, \mathbf{X}_2)]$

Then

 $2v = E_{\mathbf{U}_{11}^*}[\psi(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*}, \mathbf{X}_2)] + E_{\mathbf{U}_{12}^*}[\psi(\mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*}, \mathbf{X}_2)]$ = $E_{\mathbf{U}_1}[\psi(\mathbf{X}_{11}^*|_{\mathbf{U}_1}, \mathbf{X}_2) + \psi(\mathbf{X}_{12}^*|_{\mathbf{U}_1}, \mathbf{X}_2)]$

Then

 $2v = E_{\mathbf{U}_{11}^*}[\psi(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*}, \mathbf{X}_2)] + E_{\mathbf{U}_{12}^*}[\psi(\mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*}, \mathbf{X}_2)]$ = $E_{\mathbf{U}_1}[\psi(\mathbf{X}_{11}^*|_{\mathbf{U}_1}, \mathbf{X}_2) + \psi(\mathbf{X}_{12}^*|_{\mathbf{U}_1}, \mathbf{X}_2)]$ = $(\beta - 1)h(\mathbf{Y}_{31}, \mathbf{Y}_{32}|_{\mathbf{U}_1}) + h(\mathbf{Y}_{11}, \mathbf{Y}_{12}|_{\mathbf{U}_1}) - \beta h(\mathbf{Y}_{21}, \mathbf{Y}_{22}|_{\mathbf{U}_1})$

Then

$$\begin{aligned} &2v = \mathbf{E}_{\mathbf{U}_{11}^{*}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{11}^{*}}, \mathbf{X}_{2})] + \mathbf{E}_{\mathbf{U}_{12}^{*}}[\psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{12}^{*}}, \mathbf{X}_{2})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{1}}, \mathbf{X}_{2}) + \psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{1}}, \mathbf{X}_{2})] \\ &= (\beta - 1)h(\mathbf{Y}_{31}, \mathbf{Y}_{32}|\mathbf{U}_{1}) + h(\mathbf{Y}_{11}, \mathbf{Y}_{12}|\mathbf{U}_{1}) - \beta h(\mathbf{Y}_{21}, \mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &= (\beta - 1)[h(\mathbf{Y}_{31}|\mathbf{Y}_{32}, \mathbf{U}_{1}) + h(\mathbf{Y}_{32}|\mathbf{Y}_{11}, \mathbf{U}_{1}) + I(\mathbf{Y}_{11}; \mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &+ [h(\mathbf{Y}_{11}|\mathbf{Y}_{32}, \mathbf{U}_{1}) + h(\mathbf{Y}_{12}|\mathbf{Y}_{11}, \mathbf{U}_{1}) + I(\mathbf{Y}_{11}; \mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &- \beta [h(\mathbf{Y}_{21}|\mathbf{Y}_{32}, \mathbf{U}_{1}) + h(\mathbf{Y}_{22}|\mathbf{Y}_{11}, \mathbf{U}_{1}) + I(\mathbf{Y}_{21}; \mathbf{Y}_{32}|\mathbf{U}_{1}) + I(\mathbf{Y}_{11}; \mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &- I(\mathbf{Y}_{21}; \mathbf{Y}_{22}|\mathbf{U}_{1})] \end{aligned}$$

Then

$$\begin{aligned} 2v &= \mathcal{E}_{\mathbf{U}_{11}^{*}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{11}^{*}}, \mathbf{X}_{2})] + \mathcal{E}_{\mathbf{U}_{12}^{*}}[\psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{12}^{*}}, \mathbf{X}_{2})] \\ &= \mathcal{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{1}}, \mathbf{X}_{2}) + \psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{1}}, \mathbf{X}_{2})] \\ &= (\beta - 1)h(\mathbf{Y}_{31}, \mathbf{Y}_{32}|\mathbf{U}_{1}) + h(\mathbf{Y}_{11}, \mathbf{Y}_{12}|\mathbf{U}_{1}) - \beta h(\mathbf{Y}_{21}, \mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &= (\beta - 1)[h(\mathbf{Y}_{31}|\mathbf{Y}_{32}, \mathbf{U}_{1}) + h(\mathbf{Y}_{32}|\mathbf{Y}_{11}, \mathbf{U}_{1}) + I(\mathbf{Y}_{11}; \mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &+ [h(\mathbf{Y}_{11}|\mathbf{Y}_{32}, \mathbf{U}_{1}) + h(\mathbf{Y}_{12}|\mathbf{Y}_{11}, \mathbf{U}_{1}) + I(\mathbf{Y}_{11}; \mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &- \beta[h(\mathbf{Y}_{21}|\mathbf{Y}_{32}, \mathbf{U}_{1}) + h(\mathbf{Y}_{22}|\mathbf{Y}_{11}, \mathbf{U}_{1}) + I(\mathbf{Y}_{21}; \mathbf{Y}_{32}|\mathbf{U}_{1}) + I(\mathbf{Y}_{11}; \mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &- I(\mathbf{Y}_{21}; \mathbf{Y}_{22}|\mathbf{U}_{1})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}|_{\mathbf{Y}_{32}, \mathbf{U}_{1}}, \mathbf{X}_{21})] + \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{12}|_{\mathbf{Y}_{11}, \mathbf{U}_{1}}, \mathbf{X}_{22})] \end{aligned}$$

 $+ \beta [I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_1)]$

Then

$$\begin{aligned} &2v = \mathbf{E}_{\mathbf{U}_{11}^{*}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{11}^{*}},\mathbf{X}_{2})] + \mathbf{E}_{\mathbf{U}_{12}^{*}}[\psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{12}^{*}},\mathbf{X}_{2})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{1}},\mathbf{X}_{2}) + \psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{1}},\mathbf{X}_{2})] \\ &= (\beta - 1)h(\mathbf{Y}_{31},\mathbf{Y}_{32}|\mathbf{U}_{1}) + h(\mathbf{Y}_{11},\mathbf{Y}_{12}|\mathbf{U}_{1}) - \beta h(\mathbf{Y}_{21},\mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &= (\beta - 1)[h(\mathbf{Y}_{31}|\mathbf{Y}_{32},\mathbf{U}_{1}) + h(\mathbf{Y}_{32}|\mathbf{Y}_{11},\mathbf{U}_{1}) + I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &+ [h(\mathbf{Y}_{11}|\mathbf{Y}_{32},\mathbf{U}_{1}) + h(\mathbf{Y}_{12}|\mathbf{Y}_{11},\mathbf{U}_{1}) + I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &- \beta[h(\mathbf{Y}_{21}|\mathbf{Y}_{32},\mathbf{U}_{1}) + h(\mathbf{Y}_{22}|\mathbf{Y}_{11},\mathbf{U}_{1}) + I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_{1}) + I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &- I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_{1})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}|_{\mathbf{Y}_{32},\mathbf{U}_{1}},\mathbf{X}_{21})] + \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{12}|_{\mathbf{Y}_{11},\mathbf{U}_{1}},\mathbf{X}_{22})] \\ &+ \beta[I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_{1}) - I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_{1}) - I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_{1}) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_{1})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}|_{\mathbf{Y}_{32},\mathbf{U}_{1}},\mathbf{X}_{21})] + \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{12}|_{\mathbf{Y}_{11},\mathbf{U}_{1}},\mathbf{X}_{22})] \\ &- \beta I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{21},\mathbf{Y}_{32},\mathbf{U}_{1}) \end{aligned}$$

Then

$$\begin{split} &2v = \mathbf{E}_{\mathbf{U}_{11}^{*}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{11}^{*}},\mathbf{X}_{2})] + \mathbf{E}_{\mathbf{U}_{12}^{*}}[\psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{12}^{*}},\mathbf{X}_{2})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}^{*}|_{\mathbf{U}_{1}},\mathbf{X}_{2}) + \psi(\mathbf{X}_{12}^{*}|_{\mathbf{U}_{1}},\mathbf{X}_{2})] \\ &= (\beta - 1)h(\mathbf{Y}_{31},\mathbf{Y}_{32}|\mathbf{U}_{1}) + h(\mathbf{Y}_{11},\mathbf{Y}_{12}|\mathbf{U}_{1}) - \beta h(\mathbf{Y}_{21},\mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &= (\beta - 1)[h(\mathbf{Y}_{31}|\mathbf{Y}_{32},\mathbf{U}_{1}) + h(\mathbf{Y}_{32}|\mathbf{Y}_{11},\mathbf{U}_{1}) + I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &+ [h(\mathbf{Y}_{11}|\mathbf{Y}_{32},\mathbf{U}_{1}) + h(\mathbf{Y}_{12}|\mathbf{Y}_{11},\mathbf{U}_{1}) + I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_{1})] \\ &- \beta[h(\mathbf{Y}_{21}|\mathbf{Y}_{32},\mathbf{U}_{1}) + h(\mathbf{Y}_{22}|\mathbf{Y}_{11},\mathbf{U}_{1}) + I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_{1}) + I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_{1}) \\ &- I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_{1})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}|_{\mathbf{Y}_{32},\mathbf{U}_{1}},\mathbf{X}_{21})] + \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{12}|_{\mathbf{Y}_{11},\mathbf{U}_{1}},\mathbf{X}_{22})] \\ &+ \beta[I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_{1}) - I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_{1}) - I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_{1}) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_{1})] \\ &= \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{11}|_{\mathbf{Y}_{32},\mathbf{U}_{1}},\mathbf{X}_{21})] + \mathbf{E}_{\mathbf{U}_{1}}[\psi(\mathbf{X}_{12}|_{\mathbf{Y}_{11},\mathbf{U}_{1}},\mathbf{X}_{22})] \\ &- \beta I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{21},\mathbf{Y}_{32},\mathbf{U}_{1}) \\ &\leq 2v - \beta I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{21},\mathbf{Y}_{32},\mathbf{U}_{1}) \end{split}$$

$$I(\mathbf{Y}_{11}; \mathbf{Y}_{32} | \mathbf{U}_1) - I(\mathbf{Y}_{21}; \mathbf{Y}_{32} | \mathbf{U}_1) - \underbrace{I(\mathbf{Y}_{11}; \mathbf{Y}_{22} | \mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22}, \mathbf{U}_1) \to \mathbf{Y}_{11}]} + \underbrace{I(\mathbf{Y}_{21}; \mathbf{Y}_{22} | \mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22}, \mathbf{U}_1) \to \mathbf{Y}_{21}]}$$

$$I(\mathbf{Y}_{11}; \mathbf{Y}_{32} | \mathbf{U}_1) - I(\mathbf{Y}_{21}; \mathbf{Y}_{32} | \mathbf{U}_1) - \underbrace{I(\mathbf{Y}_{11}; \mathbf{Y}_{22} | \mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22}, \mathbf{U}_1) \to \mathbf{Y}_{11}]} + \underbrace{I(\mathbf{Y}_{21}; \mathbf{Y}_{22} | \mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22}, \mathbf{U}_1) \to \mathbf{Y}_{21}]} = I(\mathbf{Y}_{11}; \mathbf{Y}_{32} | \mathbf{U}_1) - I(\mathbf{Y}_{21}; \mathbf{Y}_{32} | \mathbf{U}_1) - I(\mathbf{Y}_{21}; \mathbf{Y}_{22}, \mathbf{Y}_{32} | \mathbf{U}_1) + I(\mathbf{Y}_{21}; \mathbf{Y}_{22}, \mathbf{Y}_{32} | \mathbf{U}_1)$$

$$\begin{split} I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) &- I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{11}]} + \underbrace{I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{11}]} \\ &= I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{11};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) \\ &= - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1)}_{[\mathbf{Y}_{21} \to (\mathbf{Y}_{11},\mathbf{Y}_{32},\mathbf{U}_1) \to \mathbf{Y}_{22}]} + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \end{split}$$

$$\begin{split} I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) &- I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{11}]} + \underbrace{I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{21}]} \\ &= I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{11};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) \\ &= - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1)}_{[\mathbf{Y}_{21} \to (\mathbf{Y}_{11},\mathbf{Y}_{32},\mathbf{U}_1) \to \mathbf{Y}_{22}]} + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \\ &= - I(\mathbf{Y}_{11},\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \end{split}$$

$$\begin{split} I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) &- I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{11}]} + \underbrace{I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{21}]} \\ &= I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{11};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) \\ &= - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1)}_{[\mathbf{Y}_{21} \to (\mathbf{Y}_{11},\mathbf{Y}_{32},\mathbf{U}_1) \to \mathbf{Y}_{22}]} + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \\ &= - I(\mathbf{Y}_{11},\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \\ &= -I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \\ &= -I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{21},\mathbf{Y}_{32},\mathbf{U}_1) \\ \end{split}$$

where the orange terms

$$\begin{split} I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) &- I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{11}]} + \underbrace{I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{U}_1)}_{[\mathbf{Y}_{32} \to (\mathbf{Y}_{22},\mathbf{U}_1) \to \mathbf{Y}_{11}]} \\ &= I(\mathbf{Y}_{11};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{21};\mathbf{Y}_{32}|\mathbf{U}_1) - I(\mathbf{Y}_{11};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22},\mathbf{Y}_{32}|\mathbf{U}_1) \\ &= - \underbrace{I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1)}_{[\mathbf{Y}_{21} \to (\mathbf{Y}_{11},\mathbf{Y}_{32},\mathbf{U}_1) \to \mathbf{Y}_{22}]} + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \\ &= - I(\mathbf{Y}_{11},\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \\ &= -I(\mathbf{Y}_{11};\mathbf{Y}_{22}|\mathbf{Y}_{21},\mathbf{Y}_{32},\mathbf{U}_1) + I(\mathbf{Y}_{21};\mathbf{Y}_{22}|\mathbf{Y}_{32},\mathbf{U}_1) \end{split}$$

Hence we have $I(\mathbf{Y}_{11}; \mathbf{Y}_{22} | \mathbf{Y}_{21}, \mathbf{Y}_{32}, \mathbf{U}_1) = 0$ and so

$$\mathbf{Y}_{11} \rightarrow (\mathbf{Y}_{21}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$$

forms a Markov chain.

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let \mathbf{Q} be a random variable and let $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ be random variables on \mathbb{R}^k such that for any \mathbf{q} the conditional distribution $p(\mathbf{x}, \mathbf{y}, \mathbf{z} | \mathbf{q})$ has everywhere non-zero density. Suppose $\mathbf{X} \to (\mathbf{Y}, \mathbf{Q}) \to \mathbf{Z}$ and $\mathbf{Y} \to (\mathbf{X}, \mathbf{Q}) \to \mathbf{Z}$ form Markov chains. Then $(\mathbf{X}, \mathbf{Y}) \to \mathbf{Q} \to \mathbf{Z}$ forms a Markov chain.

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let \mathbf{Q} be a random variable and let $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ be random variables on \mathbb{R}^k such that for any \mathbf{q} the conditional distribution $p(\mathbf{x}, \mathbf{y}, \mathbf{z} | \mathbf{q})$ has everywhere non-zero density. Suppose $\mathbf{X} \to (\mathbf{Y}, \mathbf{Q}) \to \mathbf{Z}$ and $\mathbf{Y} \to (\mathbf{X}, \mathbf{Q}) \to \mathbf{Z}$ form Markov chains. Then $(\mathbf{X}, \mathbf{Y}) \to \mathbf{Q} \to \mathbf{Z}$ forms a Markov chain.

Recall that we have

 $\mathbf{Y}_{11} \rightarrow (\mathbf{Y}_{21}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let \mathbf{Q} be a random variable and let $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ be random variables on \mathbb{R}^k such that for any \mathbf{q} the conditional distribution $p(\mathbf{x}, \mathbf{y}, \mathbf{z} | \mathbf{q})$ has everywhere non-zero density. Suppose $\mathbf{X} \to (\mathbf{Y}, \mathbf{Q}) \to \mathbf{Z}$ and $\mathbf{Y} \to (\mathbf{X}, \mathbf{Q}) \to \mathbf{Z}$ form Markov chains. Then $(\mathbf{X}, \mathbf{Y}) \to \mathbf{Q} \to \mathbf{Z}$ forms a Markov chain.

Recall that we have

 $\mathbf{Y}_{11} \rightarrow (\mathbf{Y}_{21}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

Since we also have

 $\mathbf{Y}_{21} \rightarrow (\mathbf{Y}_{11}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let \mathbf{Q} be a random variable and let $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ be random variables on \mathbb{R}^k such that for any \mathbf{q} the conditional distribution $p(\mathbf{x}, \mathbf{y}, \mathbf{z} | \mathbf{q})$ has everywhere non-zero density. Suppose $\mathbf{X} \to (\mathbf{Y}, \mathbf{Q}) \to \mathbf{Z}$ and $\mathbf{Y} \to (\mathbf{X}, \mathbf{Q}) \to \mathbf{Z}$ form Markov chains. Then $(\mathbf{X}, \mathbf{Y}) \to \mathbf{Q} \to \mathbf{Z}$ forms a Markov chain.

Recall that we have

 $\mathbf{Y}_{11} \rightarrow (\mathbf{Y}_{21}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

Since we also have

 $\mathbf{Y}_{21} \rightarrow (\mathbf{Y}_{11}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

By Lemma 1 we get

 $(\mathbf{Y}_{11},\mathbf{Y}_{21}) \rightarrow (\mathbf{Y}_{32},\mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let \mathbf{Q} be a random variable and let $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ be random variables on \mathbb{R}^k such that for any \mathbf{q} the conditional distribution $p(\mathbf{x}, \mathbf{y}, \mathbf{z} | \mathbf{q})$ has everywhere non-zero density. Suppose $\mathbf{X} \to (\mathbf{Y}, \mathbf{Q}) \to \mathbf{Z}$ and $\mathbf{Y} \to (\mathbf{X}, \mathbf{Q}) \to \mathbf{Z}$ form Markov chains. Then $(\mathbf{X}, \mathbf{Y}) \to \mathbf{Q} \to \mathbf{Z}$ forms a Markov chain.

Recall that we have

 $\mathbf{Y}_{11} \rightarrow (\mathbf{Y}_{21}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

 $\mathbf{Y}_{21} \rightarrow (\mathbf{Y}_{11}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

Since we also have

By Lemma 1 we get

 $(\mathbf{Y}_{11},\mathbf{Y}_{21}) \rightarrow (\mathbf{Y}_{32},\mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

Again we also have

 $(\mathbf{Y}_{11},\mathbf{Y}_{21}) \rightarrow (\mathbf{Y}_{22},\mathbf{U}_1) \rightarrow \mathbf{Y}_{32}$

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let \mathbf{Q} be a random variable and let $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ be random variables on \mathbb{R}^k such that for any \mathbf{q} the conditional distribution $p(\mathbf{x}, \mathbf{y}, \mathbf{z} | \mathbf{q})$ has everywhere non-zero density. Suppose $\mathbf{X} \to (\mathbf{Y}, \mathbf{Q}) \to \mathbf{Z}$ and $\mathbf{Y} \to (\mathbf{X}, \mathbf{Q}) \to \mathbf{Z}$ form Markov chains. Then $(\mathbf{X}, \mathbf{Y}) \to \mathbf{Q} \to \mathbf{Z}$ forms a Markov chain.

Recall that we have

 $\mathbf{Y}_{11} \rightarrow (\mathbf{Y}_{21}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

Since we also have

 $\mathbf{Y}_{21} \rightarrow (\mathbf{Y}_{11}, \mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$

By Lemma 1 we get

$$(\mathbf{Y}_{11}, \mathbf{Y}_{21}) \rightarrow (\mathbf{Y}_{32}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{22}$$

Again we also have

 $(\mathbf{Y}_{11}, \mathbf{Y}_{21}) \rightarrow (\mathbf{Y}_{22}, \mathbf{U}_1) \rightarrow \mathbf{Y}_{32}$

and hence by Lemma 1 we obtain a Markov chain

 $(\mathbf{Y}_{11}, \mathbf{Y}_{21}) \rightarrow \mathbf{U}_1 \rightarrow (\mathbf{Y}_{22}, \mathbf{Y}_{32})$

We will invoke the following lemma, which can be shown by considering the characteristic functions:

Lemma 2

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k and $\mathbf{Z}_1, \mathbf{Z}_2$ be k-dimensional Gaussian random variables such that $(\mathbf{X}_1, \mathbf{X}_2), \mathbf{Z}_1$ and \mathbf{Z}_2 are independent. Then $\mathbf{X}_1 + \mathbf{Z}_1 \perp \mathbf{X}_2 + \mathbf{Z}_2$ implies $\mathbf{X}_1 \perp \mathbf{X}_2$.

We will invoke the following lemma, which can be shown by considering the characteristic functions:

Lemma 2

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k and $\mathbf{Z}_1, \mathbf{Z}_2$ be k-dimensional Gaussian random variables such that $(\mathbf{X}_1, \mathbf{X}_2), \mathbf{Z}_1$ and \mathbf{Z}_2 are independent. Then $\mathbf{X}_1 + \mathbf{Z}_1 \perp \mathbf{X}_2 + \mathbf{Z}_2$ implies $\mathbf{X}_1 \perp \mathbf{X}_2$.

Recall that we have

 $(\mathbf{Y}_{11}, \mathbf{Y}_{21}) \rightarrow \mathbf{U}_1 \rightarrow (\mathbf{Y}_{22}, \mathbf{Y}_{32})$

We will invoke the following lemma, which can be shown by considering the characteristic functions:

Lemma 2

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k and $\mathbf{Z}_1, \mathbf{Z}_2$ be k-dimensional Gaussian random variables such that $(\mathbf{X}_1, \mathbf{X}_2), \mathbf{Z}_1$ and \mathbf{Z}_2 are independent. Then $\mathbf{X}_1 + \mathbf{Z}_1 \perp \mathbf{X}_2 + \mathbf{Z}_2$ implies $\mathbf{X}_1 \perp \mathbf{X}_2$.

Recall that we have

$$(\mathbf{Y}_{11}, \mathbf{Y}_{21}) \to \mathbf{U}_1 \to (\mathbf{Y}_{22}, \mathbf{Y}_{32})$$

In particular

 $\mathbf{Y}_{11} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{Y}_{22}$

We will invoke the following lemma, which can be shown by considering the characteristic functions:

Lemma 2

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k and $\mathbf{Z}_1, \mathbf{Z}_2$ be k-dimensional Gaussian random variables such that $(\mathbf{X}_1, \mathbf{X}_2), \mathbf{Z}_1$ and \mathbf{Z}_2 are independent. Then $\mathbf{X}_1 + \mathbf{Z}_1 \perp \mathbf{X}_2 + \mathbf{Z}_2$ implies $\mathbf{X}_1 \perp \mathbf{X}_2$.

Recall that we have

$$(\mathbf{Y}_{11}, \mathbf{Y}_{21}) \to \mathbf{U}_1 \to (\mathbf{Y}_{22}, \mathbf{Y}_{32})$$

In particular

 $\mathbf{Y}_{11} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{Y}_{22}$

That is,

$$\mathbf{X}_{11} + \mathbf{Z}_{11} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{X}_{12} + \mathbf{Z}_{12} + \mathbf{Z}_{22}$$

We will invoke the following lemma, which can be shown by considering the characteristic functions:

Lemma 2

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k and $\mathbf{Z}_1, \mathbf{Z}_2$ be k-dimensional Gaussian random variables such that $(\mathbf{X}_1, \mathbf{X}_2), \mathbf{Z}_1$ and \mathbf{Z}_2 are independent. Then $\mathbf{X}_1 + \mathbf{Z}_1 \perp \mathbf{X}_2 + \mathbf{Z}_2$ implies $\mathbf{X}_1 \perp \mathbf{X}_2$.

Recall that we have

$$(\mathbf{Y}_{11}, \mathbf{Y}_{21}) \rightarrow \mathbf{U}_1 \rightarrow (\mathbf{Y}_{22}, \mathbf{Y}_{32})$$

In particular

 $\mathbf{Y}_{11} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{Y}_{22}$

That is,

$$\mathbf{X}_{11} + \mathbf{Z}_{11} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{X}_{12} + \mathbf{Z}_{12} + \mathbf{Z}_{22}$$

Hence by Lemma 2,

 $\mathbf{X}_{11} \rightarrow \mathbf{U}_1 \rightarrow \mathbf{X}_{12}$

forms a Markov chain.

Equivalently we have

$$(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} + \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*}) \perp (\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} - \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*})$$

Equivalently we have

$$(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} + \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*}) \perp (\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} - \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*})$$

and the following lemma implies that $p(\mathbf{x}_{11}^*|\mathbf{u}_{11}^*)$ and $p(\mathbf{x}_{12}^*|\mathbf{u}_{12}^*)$ are Gaussian distributions having the same covariance matrix, where \mathbf{u}_{11}^* , \mathbf{u}_{12}^* are arbitrary.

Equivalently we have

$$(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} + \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*}) \perp (\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} - \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*})$$

and the following lemma implies that $p(\mathbf{x}_{11}^*|\mathbf{u}_{11}^*)$ and $p(\mathbf{x}_{12}^*|\mathbf{u}_{12}^*)$ are Gaussian distributions having the same covariance matrix, where \mathbf{u}_{11}^* , \mathbf{u}_{12}^* are arbitrary.

Lemma 3 (Corollary 3 of [Geng, Nair '14])

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k such that $\mathbf{X}_1 \perp \mathbf{X}_2$ and $(\mathbf{X}_1 + \mathbf{X}_2) \perp (\mathbf{X}_1 - \mathbf{X}_2)$. Then $\mathbf{X}_1, \mathbf{X}_2$ are Gaussians having the same covariance matrix.

Equivalently we have

$$(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} + \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*}) \perp (\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} - \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*})$$

and the following lemma implies that $p(\mathbf{x}_{11}^*|\mathbf{u}_{11}^*)$ and $p(\mathbf{x}_{12}^*|\mathbf{u}_{12}^*)$ are Gaussian distributions having the same covariance matrix, where \mathbf{u}_{11}^* , \mathbf{u}_{12}^* are arbitrary.

Lemma 3 (Corollary 3 of [Geng, Nair '14])

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k such that $\mathbf{X}_1 \perp \mathbf{X}_2$ and $(\mathbf{X}_1 + \mathbf{X}_2) \perp (\mathbf{X}_1 - \mathbf{X}_2)$. Then $\mathbf{X}_1, \mathbf{X}_2$ are Gaussians having the same covariance matrix.

This means that the maximizing distribution $(\mathbf{X}_1, \mathbf{U}_1) \sim p^*(\mathbf{x}_1, \mathbf{u}_1)$ for

$$\max_{\substack{p(\mathbf{x}_1)p(\mathbf{u}_1|\mathbf{x}_1)\\ \mathrm{E}[\mathbf{X}_1\mathbf{X}_1^T] \preceq K_1}} \mathrm{E}_{\mathbf{U}_1}[\psi(\mathbf{X}_1|_{\mathbf{U}_1}, \mathbf{X}_2)]$$

must satisfy

$$\mathbf{X}_1|_{\mathbf{U}_1=\mathbf{u}_1} \sim \mathcal{N}(\mu_{\mathbf{u}_1}, \hat{K}_1)$$

for some $\mu_{\mathbf{u}_1} \in \mathbb{R}^k$ and $\hat{K}_1 \succeq 0$.

Equivalently we have

$$(\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} + \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*}) \perp (\mathbf{X}_{11}^*|_{\mathbf{U}_{11}^*=\mathbf{u}_{11}^*} - \mathbf{X}_{12}^*|_{\mathbf{U}_{12}^*=\mathbf{u}_{12}^*})$$

and the following lemma implies that $p(\mathbf{x}_{11}^*|\mathbf{u}_{11}^*)$ and $p(\mathbf{x}_{12}^*|\mathbf{u}_{12}^*)$ are Gaussian distributions having the same covariance matrix, where \mathbf{u}_{11}^* , \mathbf{u}_{12}^* are arbitrary.

Lemma 3 (Corollary 3 of [Geng, Nair '14])

Let $\mathbf{X}_1, \mathbf{X}_2$ be random variables in \mathbb{R}^k such that $\mathbf{X}_1 \perp \mathbf{X}_2$ and $(\mathbf{X}_1 + \mathbf{X}_2) \perp (\mathbf{X}_1 - \mathbf{X}_2)$. Then $\mathbf{X}_1, \mathbf{X}_2$ are Gaussians having the same covariance matrix.

This means that the maximizing distribution $(\mathbf{X}_1, \mathbf{U}_1) \sim p^*(\mathbf{x}_1, \mathbf{u}_1)$ for

$$\max_{\substack{p(\mathbf{x}_1)p(\mathbf{u}_1|\mathbf{x}_1)\\ \mathrm{E}[\mathbf{X}_1\mathbf{X}_1^T] \preceq K_1}} \mathrm{E}_{\mathbf{U}_1}[\psi(\mathbf{X}_1|\mathbf{U}_1,\mathbf{X}_2)]$$

must satisfy

$$\mathbf{X}_1|_{\mathbf{U}_1=\mathbf{u}_1} \sim \mathcal{N}(\mu_{\mathbf{u}_1}, \hat{K}_1)$$

for some $\mu_{\mathbf{u}_1} \in \mathbb{R}^k$ and $\hat{K}_1 \succeq 0$. Finally $\mu_{\mathbf{u}_1} = 0$ since $p^*(\mathbf{x}_1 | \mathbf{u}_1)$ is zero-mean. This concludes the proof of Proposition 1 and Theorem 1.

• We establish some properties concerning the maximizer of some non-convex matrix functionals using information-theoretic methods.

• We establish some properties concerning the maximizer of some non-convex matrix functionals using information-theoretic methods.

• Based on such result we propose a Gaussian optimality conjecture which if true would imply the capacity region of the Gaussian Z-interference channel.

• We establish some properties concerning the maximizer of some non-convex matrix functionals using information-theoretic methods.

• Based on such result we propose a Gaussian optimality conjecture which if true would imply the capacity region of the Gaussian Z-interference channel.

Thank you