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Gaussian Z-interference channel

e An (IC) models the situation of two mutually interfering
point-to-point communications over a shared medium. Formally, a memoryless
interference channel is defined by a stochastic map W (y, ya|z1, 22).
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setting as depicted below, where a € (0,1). (If @ > 1 this setting becomes strong
interference and the capacity region is known [Costa ’85])
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Gaussian Z-interference channel

e An (IC) models the situation of two mutually interfering
point-to-point communications over a shared medium. Formally, a memoryless
interference channel is defined by a stochastic map W (y, ya|z1, 22).

e We are in particular interested to the (GZIC)
setting as depicted below, where a € (0,1). (If @ > 1 this setting becomes strong
interference and the capacity region is known [Costa ’85])

Gaussian Z-interference channel
Yi=X1+2
Yo = Xo +aX1 + 22

where 71, Z5 ~ N(0,1) independent of X; and X.

Zy ~ N(0,1)

X1 Y,
a

X2—>@—>Yz

Zy ~ N(0,1)
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Gaussian Z-interference channel

@ We consider an equivalent formulation of the k-letter form of GZIC:
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Gaussian Z-interference channel

@ We consider an equivalent formulation of the k-letter form of GZIC:

Gaussian Z-interference channel
Y =X1+7Z
Yo =Xo+X1+7Z1+ 7o

where Z1 ~ N(0,1), Zy ~ N(0, NoI) (where Ny := 25 — 1, a € (0,1)) and X;, Y, Z;
(i = 1,2) are random variables in R* (k > 1), under the power constraints

E[[|X1]]°] < kPy
E[|X2[?] < kPy

where Py, P, > 0.




NSNS
Han—Kobayashi region

e For general two-user interference channel Han—Kobayashi (HK) region [Han,
Kobayashi ’81] is the best achievable region known.
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e For general two-user interference channel Han-Kobayashi (HK) region [Han,
Kobayashi ’81] is the best achievable region known.

e HK region is known to be strictly suboptimal for some discrete channels. In
particular the HK region is strictly improved by multi-letter extensions. [Nair,
Xia, Yazdanpanah 15
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Han—Kobayashi region

e For general two-user interference channel Han-Kobayashi (HK) region [Han,
Kobayashi ’81] is the best achievable region known.
e HK region is known to be strictly suboptimal for some discrete channels. In

particular the HK region is strictly improved by multi-letter extensions. [Nair,
Xia, Yazdanpanah 15

e For GZIC with Gaussian inputs multi-letter extension does not improve. [Nair,
Ng '19]
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Han—Kobayashi region

e For general two-user interference channel Han-Kobayashi (HK) region [Han,
Kobayashi ’81] is the best achievable region known.

e HK region is known to be strictly suboptimal for some discrete channels. In
particular the HK region is strictly improved by multi-letter extensions. [Nair,
Xia, Yazdanpanah 15

e For GZIC with Gaussian inputs multi-letter extension does not improve. [Nair,
Ng '19]

° : Is k-letter HK region for GZIC L J-letter HK region for GZIC with
Gaussian inputs? i.e.

RUx(Pr, P) = Rﬁ?(_gs(Pl, Py)
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Han—Kobayashi region

e For general two-user interference channel Han-Kobayashi (HK) region [Han,
Kobayashi ’81] is the best achievable region known.
e HK region is known to be strictly suboptimal for some discrete channels. In

particular the HK region is strictly improved by multi-letter extensions. [Nair,
Xia, Yazdanpanah ’15]

e For GZIC with Gaussian inputs multi-letter extension does not improve. [Nair,
Ng '19]
° : Is k-letter HK region for GZIC L J-letter HK region for GZIC with

Gaussian inputs? i.e.

RUx(Pr, P) = Rﬁ?{_gs(ﬂ, Py)

@ If so then the single-letter HK region with Gaussian inputs RSI)(_GS (Py, P,) is the

capacity.
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NSNS
Han—Kobayashi region for GZIC

e For our GZIC the HK region reads:

k-letter HK region for GZIC
kRy < WXy +Z1|Q) — h(Z1)
kRy < h(Xa + X1 + Z1 + Z2|U1, Q) — h(Xy + Z1 + Z2|U1, Q)
E(Ry + Rp) < hM(Xo + X1 +Z1 +Z2|Q) — h(Xy1 +Z1 + Z2|U,Q)
+ h(X1 +Z41|Uy, Q) — h(Zy)
where Z1 ~ N (0,1) and Zs ~ N(0, NoT).
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Han—Kobayashi region for GZIC

e For our GZIC the HK region reads:

k-letter HK region for GZIC
kRy < WXy +Z1|Q) — h(Z1)
kRy < h(Xa + X1 + Z1 + Z2|U1, Q) — h(Xy + Z1 + Z2|U1, Q)
E(Ry + Rp) < hM(Xo + X1 +Z1 +Z2|Q) — h(Xy1 +Z1 + Z2|U,Q)
+ h(X1 +Z41|Uy, Q) — h(Zy)
where Z1 ~ N (0,1) and Zs ~ N(0, NoT).

® (Ri,Ry) € Rg?((Pl, P,) if there exists p(q)p(u1, x1|q)p(x2|q) satisfying the
above three inequalities, along with E[||X;||?] < kP; (i = 1,2).




|
Han—Kobayashi region for GZIC

e For our GZIC the HK region reads:

k-letter HK region for GZIC
kRy < h(Xy + Z1|Q) — h(Zy)
kERy < h(Xgo+ X1 4+ Z1 + Z2|U1,Q) — h(X1 + Z1 + Z5|U1, Q)
k(Ri + Ry) < h(Xo+ X1 +Z1 4+ Z2|Q) — h(X1 + Z1 + Z2|U,Q)
+ WXy + Z1|U1, Q) — h(Z1)

where Z1 ~ N(O,I) and Zg ~ N(O,NQI)

o (R1,Ry) € Rg?{(Pl, P,) if there exists p(q)p(u1, x1|q)p(x2|q) satisfying the
above three inequalities, along with E[||X;||?] < kP; (i = 1,2).

o (R1,Rs) € Rg?{_GS(Pl, Py) if there exists p(q)p(uy, x1|q)p(x2|q) satisfying the
above three inequalities, along with E[||X;|%] < kP; (i = 1,2), with Uy, X; — Uy,
X5 being independent zero-mean Gaussians conditioned on Q (i.e. with

).
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Han—Kobayashi region for GZIC: Remarks

o It is known that the time-sharing variable Q strictly improves on the HK region
without time-sharing, i.e. under power constraints the optimal distribution for
(X1,X32) when Q is constant is not Gaussian but mizture of Gaussian instead.
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o It is known that the time-sharing variable Q strictly improves on the HK region
without time-sharing, i.e. under power constraints the optimal distribution for
(X1,X32) when Q is constant is not Gaussian but mizture of Gaussian instead.

e The traditional ”"monotonicity along a path” approach [Stam ’59] for proving
Gaussian optimality of non-convex functionals hence fails.
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|
Han—Kobayashi region for GZIC: Remarks

o It is known that the time-sharing variable Q strictly improves on the HK region
without time-sharing, i.e. under power constraints the optimal distribution for
(X1,X32) when Q is constant is not Gaussian but mizture of Gaussian instead.

e The traditional ”"monotonicity along a path” approach [Stam ’59] for proving
Gaussian optimality of non-convex functionals hence fails.

e This motivates us to consider certain Fenchel dual functional which we
conjectured to be optimized by Gaussian.
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Gaussian optimality conjecture

e In this paper we propose the following conjecture concerning Gaussian
optimality of certain functional, which if true would imply that
R%I)((Pl, Py) = Rg?{-GS(Plv P,) and hence would solve the capacity of GZIC.
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Gaussian optimality conjecture

e In this paper we propose the following conjecture concerning Gaussian
optimality of certain functional, which if true would imply that

R%)((Pl, Py) = Rgl)(-Gs(Plv P,) and hence would solve the capacity of GZIC.
Conjecture 1
For > 1, Ny > 0 and k£ x k matrices >, Ao = 0, the maximum
max (68— Dh(Xg + Xy + Z1 + Zy) + h(Xy + Z1) — Bh(Xy + Zy + Zo)

p(x1)p(x2)
E[X2X1]1=<A5

(D E[Xlxg‘})}

where Z1 ~ N(0,1), Zo ~ N(0, NaI) and X;,Z; (i = 1,2) are random variables in R*
(k > 1), is attained by Gaussian X; and Xo.
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Gaussian optimality conjecture

e In this paper we propose the following conjecture concerning Gaussian
optimality of certain functional, which if true would imply that

R%)((Pl, Py) = Rgl)(-Gs(Plv P,) and hence would solve the capacity of GZIC.
Conjecture 1
For > 1, Ny > 0 and k£ x k matrices >, Ao = 0, the maximum
max (68— Dh(Xg + Xy + Z1 + Zy) + h(Xy + Z1) — Bh(Xy + Zy + Zo)

p(x1)p(x2)
E[X2X1]1=<A5

(D E[Xlx{})}

where Z1 ~ N(0,1), Zo ~ N(0, NaI) and X;,Z; (i = 1,2) are random variables in R*
(k > 1), is attained by Gaussian X; and Xo.

@ In the following sessions we will show how does this conjecture imply the
optimality of Gaussian inputs.
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Dual functional

With a duality argument as in [Costa, Nair ’16] for § > 1 and @1, Q2 > 0 we have

s KR+ 9F0) = Cavn | x| f3(0%0: )
E[[[X1]*]<kQ1
E[[|X2]?]<kQ2

max k(Ri + fR2) =Cq, 0 { max fB,GS(K1;K2)}
Rgcl)ccs(QlaQﬂ e K1,K2>0

R(}ﬁi (Q1,Q2)

tr(Kl)SEQl
tr(KQ)SkQQ
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Dual functional
With a duality argument as in [Costa, Nair ’16] for § > 1 and @1, Q2 > 0 we have

max k(R; + fR2) = CQ17Q2 |: ( max fﬂ(Xl, Xg):|
p

o x1)p(x2)
RE) (Q1,Q2) B{IX [2]<k:

E[[|X2]?]<kQ2

o X k(R + BRa) =Cq100 { omax fo.as(Kr, K2)}
RHK—GS(QI’QQ) tr(Kl)Sle

tr(KQ)SkQQ

where

f3(X1,Xg) = h(Xg + Xy + Zy + Z2) — h(Zy) + Cx, [¥(X1,X2)]

1 .
f.as(Ki, Ka) := 3 log |Ka + K1+ 1+ NoI|+ max Yo (K1, Ka)
=0
f<1le1




Dual functional

With a duality argument as in [Costa, Nair ’16] for § > 1 and @1, Q2 > 0 we have

o KR+ ) =Couqu|  max  f3(X1, %)
p(X1)p(X2
R (@1.@2) E[[[X1[|2]<kQ:
E[||X2|?]<kQ2

o X k(R + BRa) =Cq100 { omax fo.as(Kr, K2)}
RHK—GS(QI’Q2) tr(Kl)Sk:Ql

tr(KQ)SkQQ

where
f5(Xq, Xo) =

fa.as(K1, Ka) :=

(Xa + Xy + Zy + Zy) — h(Zy) + Cx, [¥(X1, X2)]

log |Ky 4+ K1 + I+ NoI|+ max ¢g (K, K»)
Ki1>0
f<1le1

N = S

and
(X1, X) := (B = Dh(Xo 4+ Xy + Z1 + Zo) + WXy + Z1) — (X1 + Z1 + Z)

1
@Dg(Kl,KQ) = 5[(,@—1)10g‘K2+K1—|—I+N2[’—|—10g|K1—|—I‘—,Blog‘Kl—l—I—i-NQI’
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Dual functional

e Making use of the above dual functional characterization one sees that to prove

Rg?{ (P, Py) = R%)(_GS(Pl, P,) it suffices to show

Cx, [#(X1,Xo)] < max (K7, Ko)
K10
K1=K;

with K; = E[X,;X]] (i = 1,2).
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Dual functional

e Making use of the above dual functional characterization one sees that to prove

Rg?((Pl, Py) = Rg?(_GS(Pl, P,) it suffices to show

Cx, [#(X1,Xo)] < max (K7, Ko)
Ki1>0
K1=K;

@ Our proposed conjecture instead implies that

Cx, [¥(X1,X2)] < Ck, [Ya (K, Ks)]

e It is not in general true for all functionals ¢ that

Cr, [#(K1)] < max  ¢(K7)
0=RK1=<K:

(although ”>" always holds under certain regularity conditions). However we
can show that the functional Ky + 1q (K7, K2) has such property and this
implies the sufficiency of our conjecture.
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Main theorem

Theorem 1
Let 5> 1 and Ny > 0. Define

1
YKy, Ka) = 5 [(,@ —1)log | Ko+ Ky + 1+ NoI| +log | K1 +I| — Blog | Ky + 1+ N21|]
for k x k (k > 1) matrices K1, Ky »= 0. Then it holds that

Cre, [Va (K1, K2)] = max ¢g(Ki, K2)
Ki1>0
K=K

for any K1, Ko = 0.
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Main theorem: Proof for ”>" part

@ The > part follows easily from the dual characterization of upper concave
envelope.
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Main theorem: Proof for ”>" part

@ The > part follows easily from the dual characterization of upper concave
envelope.

CK1 [wg(Kl,Kg)] = inf |: sup |:¢G(K1,K2) — tr(Elf(l)} +tr(21K1)}

) .
-
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Main theorem: Proof for ”>" part

@ The > part follows easily from the dual characterization of upper concave
envelope.

Cr, [ba (K1, K)] = inf [sup [wG(Kl,KQ)—tr(zlkl)}+tr(21K1)}

zlzlle K120
= 400 if By # 0
= inf [ sup [wg(Kl,Kg) —tr(ElfA(l)} —i—tr(ZlKl)]
lt klto




Main theorem: Proof for ”>" part

@ The > part follows easily from the dual characterization of upper concave
envelope.

CK1 [wg(Kl,KQ)] = inf |: sup |:¢G(K1,K2) — tr(EllA(l)} +tr(§]1K1)}

zlzlle Kizo
= +o0if 51 £ 0
= inf [ sup [T/JG(KMKZ) —tr(Elfﬁ)} +tr(21Kl)]
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Main theorem: Proof for ”>" part

@ The > part follows easily from the dual characterization of upper concave
envelope.

CK1 [wg(Kl,KQ)] = inf |: sup |:¢G(K1,K2) — tr(EllA(l)} +tr(§]1K1)}

zlzlle K120
= oo if ¥ # 0
= inf [ sup [T/JG(KMKZ) —tr(Elfﬁ)} +tr(21Kl)]
Elt klto

> sup inf [’Lﬂ(}(f(l,[(g) —tr(Zlf(l)—i—tr(ElKl)}
f(ltozl,

-~

= —xif K — K1 #0

> max Yg(K1, K»)
Ki1>0
K1=K1




Main theorem: Proof for ”<” part

@ Recall that we have defined
V(X1,X2) = (8- 1)h(Xo + X1 +Z1 + Zy) + WXy + Z1) — Bh(Xy + Z1 + Zy)
and SO w(Xl,X2) = @D(;(Kl,KQ) fOI‘ Xi ~ ./\/-(O,Ki) (Z = 1,2).
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Main theorem: Proof for ”<” part

@ Recall that we have defined
V(X1,X2) = (8- 1)h(Xo + X1 +Z1 + Zy) + WXy + Z1) — Bh(Xy + Z1 + Zy)

and so w(Xl,XQ) = @Dg(Kl,KQ) for Xz‘ ~ N(O,Ki) (Z = 1,2).
e Fixing Ky = 0 and Xy ~ N (0, K3) we have
Ck, [Va(K1, K2)] < max By, [v(Xi]u,, X2)]

p(x1)p(ui|x1)
EXi1XT]=<K;

since the right hand side is a concave functional in K that upper bounds
Ya (K1, K2).




Main theorem: Proof for ”<” part

@ Recall that we have defined
w(Xl, Xg) = (ﬁ — l)h(Xg + X1+ 7Z + ZQ) + }L(Xl + Zl) — 6h(X1 + 7y + Zg)
and so (X1, Xs) = ¥g(K1, K3) for X; ~ N (0, K;) (i = 1,2).
e Fixing Ky = 0 and Xy ~ N (0, K3) we have

Ck, [wG(KluKQ)] < max Eu, [¥(Xi]u,, X2)]
p(x1)p(uifx1)
EXi1XT]=<K;

since the right hand side is a concave functional in K that upper bounds
VYo (K, Ka).
e It remains the establish the following:
Proposition 1
Let K1 = 0 and let X5 be Gaussian. Then the maximum
max  Ey, [¢(Xi|u,, X2)]

p(x1)p(ur|x1)
EX1XT]=K,

is attained by some zero-mean Gaussian X; and constant random variable Uj.
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Proof of Proposition 1

o We will show Proposition 1 by a subadditivity argument, applying the ”doubling
trick” developed in [Geng, Nair "14].




Proof of Proposition 1

o We will show Proposition 1 by a subadditivity argument, applying the ”doubling
trick” developed in [Geng, Nair "14].
e Take a maximizer p*(x1,u;) (existence of which can be justified by Prokhorov
theorem through techniques in Appendix II of [Geng, Nair '14]) for
v i= max EUl[w(leUUXZ)]
p(x1)p(u1lx1)
BX1XT]<K;
We can assume without loss of generality p*(x1|uy) is zero-mean or otherwise
replace X; by X; — E[X;|U4].
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Proof of Proposition 1

o We will show Proposition 1 by a subadditivity argument, applying the ”doubling
trick” developed in [Geng, Nair "14].

e Take a maximizer p*(x1,u;) (existence of which can be justified by Prokhorov
theorem through techniques in Appendix II of [Geng, Nair '14]) for

v i= max EUl[w(leUUXZ)]
p(x1)p(ui]x1)
BX1XT]<K;
We can assume without loss of generality p*(x1|uy) is zero-mean or otherwise
replace X; by X; — E[X;|U4].
° : Take two independent copies (X7, U7,), (X7, Uj,) of the maximizer.

X7 + X9 X0 e X7 — X9
— 2= ——F="

v2 o V2
and U; := (U7, Uj,). Fori=1,2 let
Yii:= Xy + 2y
Yoi := X1 + Zni + Zo;
Ysi:= X1 + Zni + Zoi + Xy
where (Xo;, Z1;, Z9;) are identically distributed with (X, Z1, Z>).
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Proof of Proposition 1

Then

2v




Proof of Proposition 1

Then

2v = Eu;, [¥(XT1]us,, X2)] + Euy, [V(XTo|uy, X2)]
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Proof of Proposition 1

Then

2v = Eu;, [¥(XT1]us,, X2)] + Euy, [V(XTo|uy, X2)]
= By, [v(XT1|uy, X2) + 9 (Xislu,, X))
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Proof of Proposition 1

Then

2v = Euy, [V (X5 |uy,» X2)] + Buy, [0(Xia|uy, X2)]

= Eu, (X1 |u,, X2) + ¥ (XTslu,, X2)]
= (8 —1)h(Y31,Y32|U1) + (Y11, Y12|U1) — Bh(Y21, Y22 |Uy)
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Proof of Proposition 1

Then

2v = By, [¥(XT1|uz,» Xo)] + Euy, [¥(Xia|uz,, X2)]
= Eu, [¥(X11|u,: X2) + ¢¥(Xis]u,, X2)]
= (B - h(YSh Y32|Up) + h(Y11, Y12|Uy) — Bh(Ya1, Y22 |Uy)
= (B—=1)[h(Y31Y32,U1) + h(Y32|Y11,Uy) + 1(Y11; Y32 |Uy)]
+ [A(Y11Y32,U1) + h(Y12| Y11, Ur) + I(Y11; Y32|Uy)]
— BIh(Y21|Y32,Ur) + (Y2 Y11, Ur) + 1(Ya1; Y32 |U1) + I(Y11; Yoo | Uy)
—1(Y21; Yoo Uy)]
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Proof of Proposition 1

Then

2v = By, [¥(XT1|uz,» Xo)] + Euy, [¥(Xia|uz,, X2)]
= Eu, [v(X11|u,, X2) + (X s|u,, X))
= (B —1)h(Y31,Y32|U1) + h(Y11,Y12|Ur) — Bh(Y2r1, Yoo Uy)
= (B = D[h(Y31|Y32,U1) + h(Y32[Y11, Ur) + 1(Y11; Y32 |Uy)]
+ [A(Y11Y32,U1) + h(Y12| Y11, Ur) + I(Y11; Y32|Uy)]
— BIh(Y21|Y32,Ur) + (Y2 Y11, Ur) + 1(Ya1; Y32 |U1) + I(Y11; Yoo | Uy)
—1(Y21; Yoo Uy)]
= Eu, [(Xi1|vs, 01, Xo1)] + Eu, [0 (Xizly,,, Uy X22)]
+ BlI(Y11:Y32|Ur) — I(Y21: Y32 Uy) — I(Y11: Yoo Up) + I(Y21: Yoo Uy)]
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Proof of Proposition 1

Then

2v = Euy, [V (X5 |uy,» X2)] + Buy, [0(Xia|uy, X2)]

= Eu, [v(X11|u,, X2) + (X s|u,, X))
= (B —1)h(Y31,Y32|U1) + h(Y11,Y12|Ur) — Bh(Y2r1, Yoo Uy)
= (B = D[h(Y31|Y32,U1) + h(Y32[Y11, Ur) + 1(Y11; Y32 |Uy)]
+ [A(Y11Y32,U1) + h(Y12| Y11, Ur) + I(Y11; Y32|Uy)]

— BIh(Y21|Y32,Ur) + (Y2 Y11, Ur) + 1(Ya1; Y32 |U1) + I(Y11; Yoo | Uy)
—1(Y21; Yoo Uy)]
= By, [¥(X11]v;,,0,, Xo1)] + Eu, [(Xi2]y,,, U, X22)]
+ BlI(Y11:Y32|Ur) — I(Y21: Y32 Uy) — I(Y11: Yoo Up) + I(Y21: Yoo Uy)]
= By, [¥(X11|v;,,00, Xo1)] + Eu, [(Xi2]y,,, U, X22)]
— BI(Y11; Y22 Y21, Y3, Uy)
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Proof of Proposition 1

Then

2v = Euy, [V (X5 |uy,» X2)] + Buy, [0(Xia|uy, X2)]

= Eu, [v(X11|u,, X2) + (X s|u,, X))
= (B —1)h(Y31,Y32|U1) + h(Y11,Y12|Ur) — Bh(Y2r1, Yoo Uy)
= (B = D[h(Y31|Y32,U1) + h(Y32[Y11, Ur) + 1(Y11; Y32 |Uy)]
+ [A(Y11Y32,U1) + h(Y12| Y11, Ur) + I(Y11; Y32|Uy)]

— BIh(Y21|Y32,Ur) + (Y2 Y11, Ur) + 1(Ya1; Y32 |U1) + I(Y11; Yoo | Uy)
—1(Y21; Yoo Uy)]
= By, [v(X11lys,, 0y, Xo1)] + Eu, [V(Xazly,, vy, Xo2)]
+ BlI(Y11:Y32|Ur) — I(Y21: Y32 Uy) — I(Y11: Yoo Up) + I(Y21: Yoo Uy)]
= By, [¥(X11|v;,,00, Xo1)] + Eu, [(Xi2]y,,, U, X22)]
— BI(Y11; Y22 Y21, Y3, Uy)
< 20— BI(Y11; Y22 Yo1, Y30, Uy)
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Proof of Proposition 1

where the orange terms

I(Y11;Y32|U1) — I(Y21;Y32|Ur) —  I(Y11; Y2o|U1)  +  I(Yo21; Y22 |Uy)
—_— —_—

[Y32 = (Y22,U1) = Y11]  [Y32 = (Y22,U;1) = You
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Proof of Proposition 1

where the orange terms

I(Y11;Y32|U1) — I(Y21;Y32|Ur) —  I(Y11; Y2o|U1)  +  I(Yo21; Y22 |Uy)
—_— —— —_—— ——

[Y32 = (Y22,U1) = Y11]  [Y32 — (Y22,Uq) — You]

=1(Y11;Y32|U1) —I(Y21; Y32|U1) — I(Y11; Yoo, Y32 Up) + I(Y215 Yoo, Y32|Uy)
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Proof of Proposition 1

where the orange terms

I(Y11;Y32|Ur) = I(Y21;Y32|Uy) —  I(Y11; Y2|Ur)  +  I(Ya; Yao|Uy)
[Y32 = (Y22,U1) = Y]  [Y32 — (Y22,U1) = Yo
= 1(Y11;Y32|U1) — I(Y21; Y32|U1) — I(Y115 Yoo, Y32 U1) + I(Ya1; Yoo, Y32 |Uy)
=— I(Y11:Y2|Y3,U)  +1(Y2r; Yo|Y3, U

[Yo1 — (Y11,Y32,U1) = Yoo




Proof of Proposition 1

where the orange terms

I(Y11;Y32|Ur) = I(Y21;Y32|Uy) —  I(Y11; Y2|Ur)  +  I(Ya; Yao|Uy)
[ngn] [Y3m21]
= 1(Y11;Y32|U1) — I(Y21; Y32|U1) — I(Y115 Yoo, Y32 U1) + I(Ya1; Yoo, Y32 |Uy)
=— I(Y11:Y2|Y3,U)  +1(Y2r; Yo|Y3, U
(Y21 — (Y11,Y32,U1) = Yoo
= —I(Y11,Y21; Y22[Y32,U1) + I(Yo1; Yoo Y32, Uy)




Proof of Proposition 1

where the orange terms

I(Y11;Y32|Ur) = I(Y21;Y32|Uy) —  I(Y11; Y2|Ur)  +  I(Ya; Yao|Uy)
[Y32 = (Y22,U1) = Y]  [Y32 — (Y22,U1) = Yo
= 1(Y11;Y32|U1) — I(Y21; Y32|U1) — I(Y115 Yoo, Y32 U1) + I(Ya1; Yoo, Y32 |Uy)
=— I(Y11:Y2|Y3,U)  +1(Y2r; Yo|Y3, U
(Y21 — (Y11,Y32,U1) = Yoo
= —I(Y11,Y21; Y22[Y32,U1) + I(Yo1; Yoo Y32, Uy)
= —I(Y11; Y22|Y21, Y32, Uy)




Proof of Proposition 1

where the orange terms

I(Y11;Y32|Ur) = I(Y21;Y32|Uy) —  I(Y11; Y2|Ur)  +  I(Ya; Yao|Uy)
[Y32 = (Y22,U1) = Y]  [Y32 — (Y22,U1) = Yo
= 1(Y11;Y32|U1) — I(Y21; Y32|U1) — I(Y115 Yoo, Y32 U1) + I(Ya1; Yoo, Y32 |Uy)
=— I(Y11:Y2|Y3,U)  +1(Y2r; Yo|Y3, U
(Y21 — (Y11,Y32,U1) = Yoo
= —I(Y11,Y21; Y22[Y32,U1) + I(Yo1; Yoo Y32, Uy)
= —I(Y11; Y22|Y21, Y32, Uy)

Hence we have 1(Y11; Y22 Y21, Y3, U;) =0 and so

Yii— (Y21,Y32,U1) = Yoo

forms a Markov chain.




Proof of Proposition 1

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let Q be a random variable and let (X,Y,Z) be random variables on R”* such that
for any q the conditional distribution p(x,y,z|q) has everywhere non-zero density.

Suppose X — (Y,Q) - Z and Y — (X, Q) — Z form Markov chains. Then
(X,Y) - Q — Z forms a Markov chain.
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Proof of Proposition 1

We need the following lemma to proceed:
Lemma 1 (Double Markovity)

Let Q be a random variable and let (X,Y,Z) be random variables on R”* such that
for any q the conditional distribution p(x,y,z|q) has everywhere non-zero density.
Suppose X — (Y,Q) - Z and Y — (X, Q) — Z form Markov chains. Then
(X,Y) - Q — Z forms a Markov chain.

Recall that we have

Yii— (Y21,Y32,U;1) = Yoo
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Proof of Proposition 1

We need the following lemma to proceed:
Lemma 1 (Double Markovity)

Let Q be a random variable and let (X,Y,Z) be random variables on R”* such that
for any q the conditional distribution p(x,y,z|q) has everywhere non-zero density.
Suppose X — (Y,Q) - Z and Y — (X, Q) — Z form Markov chains. Then
(X,Y) - Q — Z forms a Markov chain.

Recall that we have
Yii— (Y21,Y32,U;1) = Yoo

Since we also have

Yo — (Y11,Y3,Up) = Yoo
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Proof of Proposition 1

We need the following lemma to proceed:
Lemma 1 (Double Markovity)

Let Q be a random variable and let (X,Y,Z) be random variables on R”* such that
for any q the conditional distribution p(x,y,z|q) has everywhere non-zero density.
Suppose X — (Y,Q) - Z and Y — (X, Q) — Z form Markov chains. Then
(X,Y) - Q — Z forms a Markov chain.

Recall that we have

Y1 — (Y21, Y3, Up) = Yoo
Since we also have

Yo — (Y11,Y3,Up) = Yoo

By Lemma 1 we get

(Yi11,Y21) = (Y32,U1) = Yoo
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Proof of Proposition 1

We need the following lemma to proceed:
Lemma 1 (Double Markovity)

Let Q be a random variable and let (X,Y,Z) be random variables on R”* such that
for any q the conditional distribution p(x,y,z|q) has everywhere non-zero density.
Suppose X — (Y,Q) - Z and Y — (X, Q) — Z form Markov chains. Then
(X,Y) - Q — Z forms a Markov chain.

Recall that we have

Y1 — (Y21, Y3, Up) = Yoo
Since we also have

Yo — (Y11,Y3,Up) = Yoo
By Lemma 1 we get

(Y11,Y21) = (Y32,U1) = Yoo

Again we also have

(Y11,Y21) = (Y22,Up) — Y3
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Proof of Proposition 1

We need the following lemma to proceed:
Lemma 1 (Double Markovity)

Let Q be a random variable and let (X,Y,Z) be random variables on R”* such that
for any q the conditional distribution p(x,y,z|q) has everywhere non-zero density.
Suppose X — (Y,Q) - Z and Y — (X, Q) — Z form Markov chains. Then
(X,Y) - Q — Z forms a Markov chain.

Recall that we have

Y11 — (Yo1, Y32, Ur) = Yoo
Since we also have

Yor — (Y11, Y32, Up) = Yoo
By Lemma 1 we get

(Y11,Y21) = (Y32,Up) = Yoo
Again we also have

(Y11, Y21) = (Y2o,Up) = Y30
and hence by Lemma 1 we obtain a Markov chain

(Y11,Y21) = U; — (Y22,Y32)
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Proof of Proposition 1

We will invoke the following lemma, which can be shown by considering the
characteristic functions:

Lemma 2

Let X, X5 be random variables in R and 71,75 be k-dimensional Gaussian random

variables such that (X, X5), Z; and Zy are independent. Then X; + Z; | Xy + Zy
implies X; 1 Xos.
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Proof of Proposition 1

We will invoke the following lemma, which can be shown by considering the
characteristic functions:

Lemma 2

Let X, X5 be random variables in R and 71,75 be k-dimensional Gaussian random
variables such that (X, X5), Z; and Zy are independent. Then X; + Z; | Xy + Zy
implies X; 1 Xos.

Recall that we have

(Y11,Y21) = Up — (Y22,Y3)




Proof of Proposition 1

We will invoke the following lemma, which can be shown by considering the
characteristic functions:

Lemma 2

Let X, X5 be random variables in R and Z;, Zs be k-dimensional Gaussian random
variables such that (X, X5), Z; and Zy are independent. Then X; + Z; | Xy + Zy
implies X; 1 Xos.

Recall that we have
(Y11,Y21) = Up — (Y22,Y3)

In particular

Y11 — U1 — Y22
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Proof of Proposition 1

We will invoke the following lemma, which can be shown by considering the
characteristic functions:

Lemma 2

Let X, X5 be random variables in R and Z;, Zs be k-dimensional Gaussian random
variables such that (X, X5), Z; and Zy are independent. Then X; + Z; | Xy + Zy
implies X; 1 Xos.

Recall that we have
(Y11,Y21) = Up — (Y22,Y3)

In particular
Y11 — U1 — Y22

That is,

X1+ 211 = Uy = Xio + Zig + Zoo

Costa-Nair-Ng-Wang GZIC functionals Talk 17 /19



Proof of Proposition 1

We will invoke the following lemma, which can be shown by considering the
characteristic functions:

Lemma 2

Let X, X5 be random variables in R and Z;, Zs be k-dimensional Gaussian random
variables such that (X, X5), Z; and Zy are independent. Then X; + Z; | Xy + Zy
implies X; 1 Xos.

Recall that we have
(Y11,Y21) = Up — (Y22,Y3)

In particular
Y11 — U1 — Y22
That is,
X1+ 2y — Uy = X2+ 2o + 2o

Hence by Lemma 2,
X11 — U1 — X12

forms a Markov chain.
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Proof of Proposition 1
Equivalently we have

(X1 lug,=uy, + Xiglut,=uy,) L (Xi1|up, =u;, — Xi2lug,=us,)

“osta-Noir.Ng. Wang GZIC functionals . (T Y T



Proof of Proposition 1

Equivalently we have

(XT1lus,=uz, + Xiolus,=ug,) L (Xi1]us,=u;, — Xi2lUug,=us,)

and the following lemma implies that p(x];|uj,) and p(x],|uj,) are Gaussian
distributions having the same covariance matrix, where uj,, uj, are arbitrary.
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Proof of Proposition 1

Equivalently we have

(XE’UTLZUE + XT2|UT2:“91‘2> 1 (XT”UEZUE B XT2|UT2:“T2)
and the following lemma implies that p(x],|u},) and p(x],|uj,) are Gaussian

distributions having the same covariance matrix, where uj,, uj, are arbitrary.

Lemma 3 (Corollary 3 of [Geng, Nair "14])

Let X, X5 be random variables in R* such that X; 1 X5 and

(X) 4+ Xy) L (X; —X3). Then X, X, are Gaussians having the same covariance
matrix.
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Proof of Proposition 1
Equivalently we have
(XE’UTLZUE + XT2|UT2:“91‘2> - (XT”UEZUE o XT2|UT2:“T2)

and the following lemma implies that p(x],|u},) and p(x],|uj,) are Gaussian
distributions having the same covariance matrix, where uj,, uj, are arbitrary.

Lemma 3 (Corollary 3 of [Geng, Nair "14])

Let X, X5 be random variables in R* such that X; 1 X5 and
(X) 4+ Xy) L (X; —X3). Then X, X, are Gaussians having the same covariance
matrix.

This means that the maximizing distribution (X, U;) ~ p*(x1,u;) for

max By, [¢(Xi|u,, X2)]
p(x1)p(ui|x1)
EX:1XT=K,

must satisfy
Xl‘U1:u1 ~ N(/’LLU?Kl)

for some py, € R and Kl > 0.
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Proof of Proposition 1
Equivalently we have
(XE’UTLZUE + XT2|UT2:“12> - (XT”UEZUE o XT2|UT2:“T2)

and the following lemma implies that p(x],|u},) and p(x],|uj,) are Gaussian
distributions having the same covariance matrix, where uj,, uj, are arbitrary.

Lemma 3 (Corollary 3 of [Geng, Nair "14])

Let X, X5 be random variables in R* such that X; 1 X5 and
(X) 4+ Xy) L (X; —X3). Then X, X, are Gaussians having the same covariance
matrix.

This means that the maximizing distribution (X, U;) ~ p*(x1,u;) for

max By, [¢(Xi|u,, X2)]
p(x1)p(ui|x1)
EX:1XT=K,

must satisfy
Xl‘U1:u1 ~ N(/’LLU?Kl)

for some /iy, € RF and K = 0. Finally p,, = 0 since p*(x;|u;) is zero-mean. This
concludes the proof of Proposition 1 and Theorem 1.
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Conclusion

o We establish some properties concerning the maximizer of some non-convex
matrix functionals using information-theoretic methods.
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Conclusion

@ We establish some properties concerning the maximizer of some non-convex
matrix functionals using information-theoretic methods.

@ Based on such result we propose a Gaussian optimality conjecture which if true
would imply the capacity region of the Gaussian Z-interference channel.
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Conclusion

@ We establish some properties concerning the maximizer of some non-convex
matrix functionals using information-theoretic methods.

@ Based on such result we propose a Gaussian optimality conjecture which if true
would imply the capacity region of the Gaussian Z-interference channel.
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