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Gaussian Z-interference channel

An interference channel (IC) models the situation of two mutually interfering
point-to-point communications over a shared medium. Formally, a memoryless
interference channel is defined by a stochastic map W (y1, y2|x1, x2).

We are in particular interested to the Gaussian Z-interference channel (GZIC)
setting as depicted below, where a ∈ (0, 1). (If a ≥ 1 this setting becomes strong
interference and the capacity region is known [Costa ’85])

Gaussian Z-interference channel

Y1 = X1 + Z1

Y2 = X2 + aX1 + Z2

where Z1, Z2 ∼ N (0, 1) independent of X1 and X2.
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Z1 ∼ N (0, 1)

Z2 ∼ N (0, 1)

a
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Gaussian Z-interference channel

We consider an equivalent formulation of the k-letter form of GZIC:

Gaussian Z-interference channel

Y1 = X1 + Z1

Y2 = X2 + X1 + Z1 + Z2

where Z1 ∼ N (0, I), Z2 ∼ N (0, N2I) (where N2 := 1
a2
− 1, a ∈ (0, 1)) and Xi,Yi,Zi

(i = 1, 2) are random variables in Rk (k ≥ 1), under the power constraints

E[‖X1‖2] ≤ kP1

E[‖X2‖2] ≤ kP2

where P1, P2 ≥ 0.
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Han–Kobayashi region

For general two-user interference channel Han–Kobayashi (HK) region [Han,
Kobayashi ’81] is the best achievable region known.

HK region is known to be strictly suboptimal for some discrete channels. In
particular the HK region is strictly improved by multi-letter extensions. [Nair,
Xia, Yazdanpanah ’15]

For GZIC with Gaussian inputs multi-letter extension does not improve. [Nair,
Ng ’19]

Question: Is k-letter HK region for GZIC
?
= k-letter HK region for GZIC with

Gaussian inputs? i.e.

R(k)
HK(P1, P2)

?
= R(k)

HK-GS(P1, P2)

If so then the single-letter HK region with Gaussian inputs R(1)
HK-GS(P1, P2) is the

capacity.
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Han–Kobayashi region for GZIC

For our GZIC the HK region reads:

k-letter HK region for GZIC

kR1 ≤ h(X1 + Z1|Q)− h(Z1)

kR2 ≤ h(X2 + X1 + Z1 + Z2|U1,Q)− h(X1 + Z1 + Z2|U1,Q)

k(R1 +R2) ≤ h(X2 + X1 + Z1 + Z2|Q)− h(X1 + Z1 + Z2|U1,Q)

+ h(X1 + Z1|U1,Q)− h(Z1)

where Z1 ∼ N (0, I) and Z2 ∼ N (0, N2I).

(R1, R2) ∈ R(k)
HK(P1, P2) if there exists p(q)p(u1,x1|q)p(x2|q) satisfying the

above three inequalities, along with E[‖Xi‖2] ≤ kPi (i = 1, 2).

(R1, R2) ∈ R(k)
HK-GS(P1, P2) if there exists p(q)p(u1,x1|q)p(x2|q) satisfying the

above three inequalities, along with E[‖Xi‖2] ≤ kPi (i = 1, 2), with U1, X1−U1,
X2 being independent zero-mean Gaussians conditioned on Q (i.e. with
Gaussian inputs).
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Han–Kobayashi region for GZIC: Remarks

It is known that the time-sharing variable Q strictly improves on the HK region
without time-sharing, i.e. under power constraints the optimal distribution for
(X1,X2) when Q is constant is not Gaussian but mixture of Gaussian instead.

The traditional ”monotonicity along a path” approach [Stam ’59] for proving
Gaussian optimality of non-convex functionals hence fails.

This motivates us to consider certain Fenchel dual functional which we
conjectured to be optimized by Gaussian.
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Gaussian optimality conjecture

In this paper we propose the following conjecture concerning Gaussian
optimality of certain functional, which if true would imply that

R(k)
HK(P1, P2) = R(k)

HK-GS(P1, P2) and hence would solve the capacity of GZIC.

Conjecture 1

For β ≥ 1, N2 ≥ 0 and k × k matrices Σ1, A2 � 0, the maximum

max
p(x1)p(x2)

E[X2XT
2 ]�A2

[
(β − 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− βh(X1 + Z1 + Z2)

− tr(Σ1 E[X1X
T
1 ])
]

where Z1 ∼ N (0, I), Z2 ∼ N (0, N2I) and Xi,Zi (i = 1, 2) are random variables in Rk
(k ≥ 1), is attained by Gaussian X1 and X2.

In the following sessions we will show how does this conjecture imply the
optimality of Gaussian inputs.
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Dual functional

With a duality argument as in [Costa, Nair ’16] for β ≥ 1 and Q1, Q2 ≥ 0 we have

max
R(k)

HK(Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[
max

p(x1)p(x2)
E[‖X1‖2]≤kQ1

E[‖X2‖2]≤kQ2

fβ(X1,X2)
]

max
R(k)

HK-GS(Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[
max

K1,K2�0
tr(K1)≤kQ1

tr(K2)≤kQ2

fβ,GS(K1,K2)
]

where

fβ(X1,X2) := h(X2 + X1 + Z1 + Z2)− h(Z1) + CX1

[
ψ(X1,X2)

]
fβ,GS(K1,K2) :=

1

2
log |K2 +K1 + I +N2I|+ max

K̂1�0

K̂1�K1

ψG(K̂1,K2)

and

ψ(X1,X2) := (β − 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− βh(X1 + Z1 + Z2)

ψG(K1,K2) :=
1

2

[
(β − 1) log |K2 +K1 + I +N2I|+ log |K1 + I| − β log |K1 + I +N2I|

]

Costa-Nair-Ng-Wang GZIC functionals Talk 8 / 19



Dual functional

With a duality argument as in [Costa, Nair ’16] for β ≥ 1 and Q1, Q2 ≥ 0 we have

max
R(k)

HK(Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[
max

p(x1)p(x2)
E[‖X1‖2]≤kQ1

E[‖X2‖2]≤kQ2

fβ(X1,X2)
]

max
R(k)

HK-GS(Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[
max

K1,K2�0
tr(K1)≤kQ1

tr(K2)≤kQ2

fβ,GS(K1,K2)
]

where

fβ(X1,X2) := h(X2 + X1 + Z1 + Z2)− h(Z1) + CX1

[
ψ(X1,X2)

]
fβ,GS(K1,K2) :=

1

2
log |K2 +K1 + I +N2I|+ max

K̂1�0

K̂1�K1

ψG(K̂1,K2)

and

ψ(X1,X2) := (β − 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− βh(X1 + Z1 + Z2)

ψG(K1,K2) :=
1

2

[
(β − 1) log |K2 +K1 + I +N2I|+ log |K1 + I| − β log |K1 + I +N2I|

]

Costa-Nair-Ng-Wang GZIC functionals Talk 8 / 19



Dual functional

With a duality argument as in [Costa, Nair ’16] for β ≥ 1 and Q1, Q2 ≥ 0 we have

max
R(k)

HK(Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[
max

p(x1)p(x2)
E[‖X1‖2]≤kQ1

E[‖X2‖2]≤kQ2

fβ(X1,X2)
]

max
R(k)

HK-GS(Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[
max

K1,K2�0
tr(K1)≤kQ1

tr(K2)≤kQ2

fβ,GS(K1,K2)
]

where

fβ(X1,X2) := h(X2 + X1 + Z1 + Z2)− h(Z1) + CX1

[
ψ(X1,X2)

]
fβ,GS(K1,K2) :=

1

2
log |K2 +K1 + I +N2I|+ max

K̂1�0

K̂1�K1

ψG(K̂1,K2)

and

ψ(X1,X2) := (β − 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− βh(X1 + Z1 + Z2)

ψG(K1,K2) :=
1

2

[
(β − 1) log |K2 +K1 + I +N2I|+ log |K1 + I| − β log |K1 + I +N2I|

]
Costa-Nair-Ng-Wang GZIC functionals Talk 8 / 19



Dual functional

Making use of the above dual functional characterization one sees that to prove

R(k)
HK(P1, P2) = R(k)

HK-GS(P1, P2) it suffices to show

CX1

[
ψ(X1,X2)

]
≤ max

K̂1�0

K̂1�K1

ψG(K̂1,K2)

with Ki = E[XiX
T
i ] (i = 1, 2).

Our proposed conjecture instead implies that

CX1

[
ψ(X1,X2)

]
≤ CK1

[
ψG(K1,K2)

]
It is not in general true for all functionals φ that

CK1 [φ(K1)] ≤ max
0�K̂1�K1

φ(K̂1)

(although ”≥” always holds under certain regularity conditions). However we
can show that the functional K1 7→ ψG(K1,K2) has such property and this
implies the sufficiency of our conjecture.
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Main theorem

Theorem 1

Let β ≥ 1 and N2 ≥ 0. Define

ψG(K1,K2) :=
1

2

[
(β− 1) log |K2 +K1 + I +N2I|+ log |K1 + I| −β log |K1 + I +N2I|

]
for k × k (k ≥ 1) matrices K1,K2 � 0. Then it holds that

CK1

[
ψG(K1,K2)

]
= max

K̂1�0

K̂1�K1

ψG(K̂1,K2)

for any K1,K2 � 0.
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Main theorem: Proof for ”≥” part

The ≥ part follows easily from the dual characterization of upper concave
envelope.

CK1

[
ψG(K1,K2)

]
= inf

Σ1

Σ1=ΣT
1

[
sup
K̂1�0

[
ψG(K̂1,K2)− tr(Σ1K̂1)

]
︸ ︷︷ ︸

= +∞ if Σ1 6� 0

+ tr(Σ1K1)
]

= inf
Σ1�0

[
sup
K̂1�0

[
ψG(K̂1,K2)− tr(Σ1K̂1)

]
+ tr(Σ1K1)

]
≥ sup

K̂1�0

inf
Σ1�0

[
ψG(K̂1,K2)− tr(Σ1K̂1) + tr(Σ1K1)

]
︸ ︷︷ ︸

= −∞ if K1 − K̂1 6� 0

≥ max
K̂1�0

K̂1�K1

ψG(K̂1,K2)
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= −∞ if K1 − K̂1 6� 0

≥ max
K̂1�0

K̂1�K1

ψG(K̂1,K2)
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Main theorem: Proof for ”≤” part

Recall that we have defined

ψ(X1,X2) := (β − 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− βh(X1 + Z1 + Z2)

and so ψ(X1,X2) = ψG(K1,K2) for Xi ∼ N (0,Ki) (i = 1, 2).

Fixing K2 � 0 and X2 ∼ N (0,K2) we have

CK1

[
ψG(K1,K2)

]
≤ max

p(x1)p(u1|x1)

E[X1XT
1 ]�K1

EU1 [ψ(X1|U1 ,X2)]

since the right hand side is a concave functional in K1 that upper bounds
ψG(K1,K2).

It remains the establish the following:

Proposition 1

Let K1 � 0 and let X2 be Gaussian. Then the maximum

max
p(x1)p(u1|x1)

E[X1XT
1 ]�K1

EU1 [ψ(X1|U1 ,X2)]

is attained by some zero-mean Gaussian X1 and constant random variable U1.
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Proof of Proposition 1

We will show Proposition 1 by a subadditivity argument, applying the ”doubling
trick” developed in [Geng, Nair ’14].

Take a maximizer p∗(x1,u1) (existence of which can be justified by Prokhorov
theorem through techniques in Appendix II of [Geng, Nair ’14]) for

v := max
p(x1)p(u1|x1)

E[X1XT
1 ]�K1

EU1 [ψ(X1|U1 ,X2)]

We can assume without loss of generality p∗(x1|u1) is zero-mean or otherwise
replace X1 by X1 − E[X1|U1].

Doubling: Take two independent copies (X∗11,U
∗
11), (X∗12,U

∗
12) of the maximizer.

Let

X11 :=
X∗11 + X∗12√

2
, X12 :=

X∗11 −X∗12√
2

and U1 := (U∗11,U
∗
12). For i = 1, 2 let

Y1i := X1i + Z1i

Y2i := X1i + Z1i + Z2i

Y3i := X1i + Z1i + Z2i + X2i

where (X2i,Z1i,Z2i) are identically distributed with (X2,Z1,Z2).
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Proof of Proposition 1

Then

2v

= EU∗
11

[ψ(X∗11|U∗
11
,X2)] + EU∗

12
[ψ(X∗12|U∗

12
,X2)]

= EU1 [ψ(X∗11|U1 ,X2) + ψ(X∗12|U1 ,X2)]

= (β − 1)h(Y31,Y32|U1) + h(Y11,Y12|U1)− βh(Y21,Y22|U1)

= (β − 1)[h(Y31|Y32,U1) + h(Y32|Y11,U1) + I(Y11;Y32|U1)]

+ [h(Y11|Y32,U1) + h(Y12|Y11,U1) + I(Y11;Y32|U1)]

− β[h(Y21|Y32,U1) + h(Y22|Y11,U1) + I(Y21;Y32|U1) + I(Y11;Y22|U1)

− I(Y21;Y22|U1)]

= EU1 [ψ(X11|Y32,U1 ,X21)] + EU1 [ψ(X12|Y11,U1 ,X22)]

+ β[I(Y11;Y32|U1)− I(Y21;Y32|U1)− I(Y11;Y22|U1) + I(Y21;Y22|U1)]

= EU1 [ψ(X11|Y32,U1 ,X21)] + EU1 [ψ(X12|Y11,U1 ,X22)]

− βI(Y11;Y22|Y21,Y32,U1)

≤ 2v − βI(Y11;Y22|Y21,Y32,U1)
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Proof of Proposition 1

where the orange terms

I(Y11;Y32|U1)− I(Y21;Y32|U1)− I(Y11;Y22|U1)︸ ︷︷ ︸
[Y32 → (Y22,U1)→ Y11]

+ I(Y21;Y22|U1)︸ ︷︷ ︸
[Y32 → (Y22,U1)→ Y21]

= I(Y11;Y32|U1)− I(Y21;Y32|U1)− I(Y11;Y22,Y32|U1) + I(Y21;Y22,Y32|U1)

= − I(Y11;Y22|Y32,U1)︸ ︷︷ ︸
[Y21 → (Y11,Y32,U1)→ Y22]

+I(Y21;Y22|Y32,U1)

= −I(Y11,Y21;Y22|Y32,U1) + I(Y21;Y22|Y32,U1)

= −I(Y11;Y22|Y21,Y32,U1)

Hence we have I(Y11;Y22|Y21,Y32,U1) = 0 and so

Y11 → (Y21,Y32,U1)→ Y22

forms a Markov chain.
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Proof of Proposition 1

We need the following lemma to proceed:

Lemma 1 (Double Markovity)

Let Q be a random variable and let (X,Y,Z) be random variables on Rk such that
for any q the conditional distribution p(x,y, z|q) has everywhere non-zero density.
Suppose X→ (Y,Q)→ Z and Y → (X,Q)→ Z form Markov chains. Then
(X,Y)→ Q→ Z forms a Markov chain.

Recall that we have
Y11 → (Y21,Y32,U1)→ Y22

Since we also have
Y21 → (Y11,Y32,U1)→ Y22

By Lemma 1 we get
(Y11,Y21)→ (Y32,U1)→ Y22

Again we also have
(Y11,Y21)→ (Y22,U1)→ Y32

and hence by Lemma 1 we obtain a Markov chain

(Y11,Y21)→ U1 → (Y22,Y32)
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Proof of Proposition 1

We will invoke the following lemma, which can be shown by considering the
characteristic functions:

Lemma 2

Let X1,X2 be random variables in Rk and Z1,Z2 be k-dimensional Gaussian random
variables such that (X1,X2), Z1 and Z2 are independent. Then X1 + Z1 ⊥ X2 + Z2

implies X1 ⊥ X2.

Recall that we have
(Y11,Y21)→ U1 → (Y22,Y32)

In particular
Y11 → U1 → Y22

That is,
X11 + Z11 → U1 → X12 + Z12 + Z22

Hence by Lemma 2,
X11 → U1 → X12

forms a Markov chain.
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Proof of Proposition 1

Equivalently we have

(X∗11|U∗
11=u∗

11
+ X∗12|U∗

12=u∗
12

) ⊥ (X∗11|U∗
11=u∗

11
−X∗12|U∗

12=u∗
12

)

and the following lemma implies that p(x∗11|u∗11) and p(x∗12|u∗12) are Gaussian
distributions having the same covariance matrix, where u∗11, u∗12 are arbitrary.

Lemma 3 (Corollary 3 of [Geng, Nair ’14])

Let X1,X2 be random variables in Rk such that X1 ⊥ X2 and
(X1 + X2) ⊥ (X1 −X2). Then X1,X2 are Gaussians having the same covariance
matrix.

This means that the maximizing distribution (X1,U1) ∼ p∗(x1,u1) for

max
p(x1)p(u1|x1)

E[X1XT
1 ]�K1

EU1 [ψ(X1|U1 ,X2)]

must satisfy
X1|U1=u1 ∼ N (µu1 , K̂1)

for some µu1 ∈ Rk and K̂1 � 0. Finally µu1 = 0 since p∗(x1|u1) is zero-mean. This
concludes the proof of Proposition 1 and Theorem 1.
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Conclusion

We establish some properties concerning the maximizer of some non-convex
matrix functionals using information-theoretic methods.

Based on such result we propose a Gaussian optimality conjecture which if true
would imply the capacity region of the Gaussian Z-interference channel.

Thank you
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