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Definitions

Hypercontractivity

A pair of random variables (X,Y ) is said to be (λ1, λ2)-hypercontractive, for
λ1, λ2 ∈ (1,∞), if

E(f(X)g(Y )) ≤ ||f(X)||λ1 ||g(Y )||λ2

holds for all non-negative functions f(·), g(·). Here

||Z||λ := E(|Z|λ)
1
λ , λ 6= 0, (normalized λ moment); ||Z||0 := eE(log |Z|).

Reverse hypercontractivity

A pair of random variables (X,Y ) is said to be (λ1, λ2)-reverse-hypercontractive, for
λ1, λ2 ∈ (−∞, 1), if

E(f(X)g(Y )) ≥ ||f(X)||λ1 ||g(Y )||λ2

holds for all positive functions f(·), g(·).
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Equivalent characterizations of hypercontractivity [Nair ’14]

Theorem 1

Let (X,Y ) ∼ µXY . The following assertions are equivalent:
1 For all non-negative functions f(·), g(·),

E(f(X)g(Y )) ≤ ||f(X)||λ1 ||g(Y )||λ2

2 For every νXY (� µXY ) we have (independently by [Carlen et. al. ’09])

1

λ1
D(νX ||µX) +

1

λ2
D(νY ||µY ) ≤ D(νXY ||µXY )

3 For every extension µU |XY such that I(U ;XY ) > 0 we have

1

λ1
I(U ;X) +

1

λ2
I(U ;Y ) ≤ I(U ;XY )

4 Let K[f ]x represents the lower convex envelope of the function f evaluated at x.

K

[
1

λ1
H(X) +

1

λ2
H(Y )−H(XY )

]
µXY

=
1

λ1
H(X) +

1

λ2
H(Y )−H(XY )
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Gray-Wyner region
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Figure 1: Gray-Wyner Network

Optimal rate region of Gray-Wyner System with 2 sources X and Y is the set of rate
triples (R0, R1, R2) such that

R0 ≥ I(XY ;V ),

R1 ≥ H(X|V ),

R2 ≥ H(Y |V )

for some conditional pmf p(v|x, y) with |V | ≤ |X| · |Y |+ 2.
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Gray-Wyner region

Computing minimum along supporting hyperplanes,

minR0 +
1

λ1
R1 +

1

λ2
R2

= min I(XY ;V ) +
1

λ1
H(X|V ) +

1

λ2
H(Y |V )

=H(XY ) +K[
1

λ1
H(X) +

1

λ2
H(Y )−H(XY )]µXY

Observations [Beigi-Gohari ’15]:

Tensorization of forward hypercontractivity ⇔ Optimality of single letter
expression of Gray-Wyner System

Determining {µXY : µXY is (λ1, λ2)-hypercontractive} ≡ Determining set of
possible µXY |V for extremal distributions in the Gray-Wyner System
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Equivalent characterizations of reverse hypercontractivity
[Beigi-Nair ’16]

Denote the reverse-hypercontractive region of (λ1, λ2) for a pair of random variables
(X,Y ) distributed according to µXY as Rr(X,Y ).

Theorem 2

The pair (λ1, λ2) with 0 < λ1 < 1, 0 < λ2 < 1 belongs to Rr(X,Y ) if and only if
for any qX and qY there exists rXY with rX = qX and rY = qY such that:

1

λ1
D(qX ||pX) +

1

λ2
D(qY ||pY ) ≥ D(rXY ||pXY )

The pair (λ1, λ2) with λ1 < 0, 0 < λ2 < 1 belongs to Rr(X,Y ) if and only if for
any qY there exists rXY with rY = qY such that:

1

λ1
D(rX ||pX) +

1

λ2
D(qY ||pY ) ≥ D(rXY ||pXY )

The pair (λ1, λ2) with 0 < λ1 < 1, λ2 < 0 belongs to to Rr(X,Y ) if and only if
for any qX there exists rXY with rX = qX such that:

1

λ1
D(rX ||pX) +

1

λ2
D(qY ||pY ) ≥ D(rXY ||pXY )

chandra@ie.cuhk.edu.hk, wy016@ie.cuhk.edu.hk Reverse hypercontractivity Talk 6 / 20



Applications of hypercontractivity

In Theoretical Computer Science

Friedgut’s Junta Theorem

KKL Theorem

Russo-Margulis formula

sharp threshold

small-set expansion

stable influences

transitive-symmetric function

In Mathematics and Physics

Measure Concentration

Transportation inequalities
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Evaluation of (Reverse)-Hypercontractivity Parameters

Information Theory

Related to determining extremal auxiliaries in multiuser information theory

Theoretical Computer Science

Theorem: Small set expansion hypothesis (SSEH) implies that there is no
efficient approximation algorithm for the 2→ 4 norm.
[Barak-Brandão-Harrow-Kelner-Steurer-Zhou 14’]

Corollary: If hypercontractivity parameters can be evaluated efficiently, then we
can falsify SSEH.

This talk: evaluation of reverse-hypercontractivity region for binary erasure channel
with uniform inputs.
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Known hypercontractivity parameters

Binary Symmetric Channel (BSC) with uniform input: [Bonami 70’, Gross 75’]

Consider a uniformly distributed binary valued X and Y obtained by passing X
through a BSC with crossover probability 1−ρ

2 . (X,Y ) is (λ1, λ2)- hypercontractive
for λ1, λ2 ∈ (1,∞) if and only if

(λ1 − 1)(λ2 − 1) ≥ ρ2

Gaussian: [Gross 75’]

Let (X,Y ) ∼ N
(

0,

[
1 ρ
ρ 1

])
, (X,Y ) is (λ1, λ2)- hypercontractive for λ1, λ2 ∈ (1,∞)

if and only if

(λ1 − 1)(λ2 − 1) ≥ ρ2
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Known hypercontractivity parameters

Binary Erasure Channel (BEC) with uniform input: [Nair-Wang 16’]

Consider a uniformly distributed binary valued X passed through a BEC with
erasure probability ε producing the ternary output Y . When

ε− 1

2
≤ 3

2
(λ2 − 1)

(X,Y ) is (λ1, λ2)- hypercontractive for λ1, λ2 ∈ (1,∞) if and only if

(λ1 − 1)(λ2 − 1) ≥ 1− ε.
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Known reverse hypercontractivity parameters

Binary Symmetric Channel (BSC) with uniform input: [Borell 82’]

Consider a uniformly distributed binary valued X and Y obtained by passing X
through a BSC with crossover probability 1−ρ

2 . (X,Y ) is (λ1, λ2)-reverse
-hypercontractive for λ1, λ2 ∈ (−∞, 1) if and only if

(λ1 − 1)(λ2 − 1) ≥ ρ2

Gaussian: [Borell 82’]

Let (X,Y ) ∼ N
(

0,

[
1 ρ
ρ 1

])
, (X,Y ) is (λ1, λ2)-reverse-hypercontractive for

λ1, λ2 ∈ (−∞, 1) if and only if

(λ1 − 1)(λ2 − 1) ≥ ρ2

Remark: In all the previous cases, the correlation bound is tight.
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Main result

Binary Erasure Channel (BEC) with uniform input

Consider a uniformly distributed binary valued X passed through a BEC with
erasure probability ε producing the ternary output Y . When λ2 < 0, (X,Y ) is
(λ1, λ2)-reverse-hypercontractive if and only if

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]

Remarks:

The correlation bound (λ1 − 1)(λ2 − 1) ≥ 1− ε is not tight.

However, as in all cases so far, local analysis suffices to compute the
hypercontractivity.

The critical behavior happens at the boundary.
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(Reverse) Hypercontractive Region for BEC with uniform input

Define λ′2 := λ2
λ2−1 , the Hölder conjugate of λ2.

When ε = 0.2,

1

1

0
λ′2 =

λ2
λ2 − 1

λ1
λ1 = (1− ε)λ′

2 + ε(0 < λ′
2 < 1)

λ1 = (1− ε)λ′
2 + ε(λ′

2 > 1) [16’]

λ1 = λ′
2

Figure 2: (Reverse) Hypercontractive Region: ε = 0.2
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Proof sketch

When λ2 < 0, equivalent to determine (λ1, λ2) such that

min
qX

max
rXY

1

λ1
D(rX ||pX) +

1

λ2
D(qY ||pY )−D(rXY ||pXY ) ≥ 0

Define: qX(X = 0) = x, rXY (X = 0, Y = 0) = r, rXY (X = 1, Y = 1) = s.

Under this parameterization,

1

λ1
D(rX ||pX) +

1

λ2
D(qY ||pY )−D(rXY ||pXY )

=
1

λ1
D

(
[x, 1− x] ||

[
1

2
,

1

2

])
+

1

λ2
D

(
[r, 1− r − s, s] ||

[
1− ε

2
, ε,

1− ε
2

])
−D

(
[r, x− r, 1− x− s, s] ||

[
1− ε

2
,
ε

2
,
ε

2
,

1− ε
2

])
=: f(x, r, s)

Wish to determine (λ1, λ2) (with λ2 < 0) such that

min
x∈[0,1]

max
r,s:r∈[0,x],s∈[0,1−x]

f(x, r, s) ≥ 0.
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Proof sketch: continued

Define, for x ∈ [0, 1]
g(x) := max

r,s:r∈[0,x],s∈[0,1−x]
f(x, r, s).

Wish to determine (λ1, λ2) (with λ2 < 0) such that g(x) ≥ 0, ∀x ∈ [0, 1].

Easy direction: From above, we require g(0) ≥ 0. This implies that

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]

Remark: This boundary condition is stronger than correlation bound for 0 < ε < 1.

For the non-trivial direction, we show that

g(x) is symmetric along x = 1
2 . (Easy - by symmetry of the (X,Y )-distribution)

g(x) has only one stationary point, i.e. g′(x) = 0, between (0, 12).

g(x) is convex at x = 1
2 and g′

(
1
2

)
= 0, g

(
1
2

)
= 0. (Easy)
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g(x) has only one stationary point between (0, 1
2)

Recall g(x) := maxr,s:r∈[0,x],s∈[0,1−x] f(x, r, s).
Hence any stationary point of g(x) will be a stationary point of f(x, r, s).

Let y = 2(x−r)
1−r−s ; it is easy to show that

the stationary points of f(x, r, s) are in 1-1 correspondence with the roots of

1− ε
ε

yλ
′
2−λ1 + y1−λ1 =

1− ε
ε

(2− y)λ
′
2−λ1 + (2− y)1−λ1 .

Hence suffices to show that there is exactly one root of above equation for
y ∈ (0, 1).
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One root of the equation: continued

Define h(y) = 1−ε
ε y

λ′2−λ1 + y1−λ1 − 1−ε
ε (2− y)λ

′
2−λ1 − (2− y)1−λ1 .

limy↓0 h(y) = +∞ and limy↓0 h
′(y) = −∞.

On the other hand h(1) = 0 and h′(1) = 2
(1−ε)λ′2+ε−λ1

ε > 0 (∵ (λ1 − 1)(λ2 − 1) > 1− ε).
Thus h(y) = 0 has at least one root for y ∈ (0, 1).

To show that h(y) = 0 has exactly one root, suffices to show that h′(y) = 0 has at
most one root in (0, 1).

By Taylor expansion,

h′(1− t) = 2
∞∑
k=0

[
(1− ε)(λ′2 − λ1)

ε

(
λ′2 − λ1 − 1

2k

)
+ (1− λ1)

(
−λ1
2k

)]
t2k

Key observation: The coefficients of t2k are: nonnegative for k ≤ k0, and negative for
k > k0 for some k0 (one sign-change).
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Recap

Our analysis showed that:

Only one interior local minimum (of g(x)) when correlation bound is strictly
satisfied.

Hence suffices to study the behavior at boundary. (For BEC, the critical case)

We also recover Borell’s result (BSC) in the paper using similar ideas (easier
analysis).

Similar local arguments used earlier for determining certain extremal auxiliaries in
network information theory.
For instance, the proof of the inequality

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}

when |X| = 2 and (U, V )−X − (Y, Z) is Markov.

Similar local analysis (to identify the extremal distributions) also works in forward
hypercontractivity proofs of BSC and BEC.
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Similar local analysis (to identify the extremal distributions) also works in forward
hypercontractivity proofs of BSC and BEC.
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Related Open Questions

Does such local analysis work in general for determining hypercontactivity
parameters?

In other words, does the functional

1

λ1
H(X) +

1

λ2
H(Y )−H(XY )

have nice geometric properties that allow such local arguments to work

If so, can we devise an algorithm to efficiently approximate the
hypercontractivity parameters?

Here is an open problem from Network Information Theory where simulations
suggest that such local arguments should suffice.

Conjecture [Sefidgaran-Gohari-Reza 15’]

For binary random variables X,Y, U, and V that satisfy the Markov chain
U −X − Y − V , and for Z = X ⊕ Y , we have

I(X,Y ;U, V ) + 2H(X|U, V ) ≥ min{H(X,Y ), 2H(Z)}
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