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DEFINITIONS AND EQUIVALENT CHARACTERIZATIONS

(X,Y) ∼ µXY is said to be (λ1, λ2)-hypercontractive if

E(f (X)g(Y)) ≤ ‖f (X)‖λ1‖g(Y)‖λ2 ∀ f (X), g(Y).

Interested in λ1, λ2 ≥ 1 and 1
λ1

+ 1
λ2
≥ 1. (Notation: ‖Z‖λ = E(|Z|λ)1/λ.)

Equivalent characterizations:
1 A simple exercise

‖E(g(Y)|X)‖λ′1 ≤ ‖g(Y)‖λ2 ∀ g(Y).
1
λ′1

= 1− 1
λ1
.

2 Using relative entropies (Carlen – Cordero-Erasquin ’09, N ’14, Friedgut ’15)

1
λ1

D(νX‖µX) +
1
λ2

D(νY‖µY) ≤ D(νXY‖µXY) ∀νXY � µXY .

3 Using mutual information and auxiliary variables (N’14)

1
λ1

I(U;X) +
1
λ2

I(U;Y) ≤ I(U;XY) ∀µU|XY .
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EQUIVALENT CHARACTERIZATIONS: CTD ...

4 Using concave envelopes of a functional (N’14)

C

[
H(XY)− 1

λ1
H(X)− 1

λ2
H(Y)

]
µXY

= Hµ(XY)− 1
λ1

Hµ(X)−
1
λ2

Hµ(Y).

Question 1: Why is hypercontractivity useful (in information theory)?

Hungarian school (’73-): interested in characterizing "image sizes" over noisy
channels

An input set B ⊆ X n

Image: union of typical outputs of each point in B when passed through a noisy
channel

Wanted to understand feasible communication rates
Strong converses to coding theorems

Some relevant publications:

Rudolf Ahlswede and Peter Gács. “Spreading of sets in product spaces and hypercontraction of the Markov
operator”. In: The Annals of Probability (1976), pp. 925–939

J Körner and K Marton. “Images of a set via two channels and their role in Mult-User Communication”. In:
IEEE Trans. Info. Theory IT-23 (Nov, 1977), pp. 751–761
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HYPERCONTRACTIVITY AND INFORMATION THEORY

Question 2: Why are these equivalent characterizations useful?

Evaluation of hypercontractivity parameters has been very useful

Measure concentration, quantum physics, theoretical computer science
Ties up evaluation of hypercontractivity to computation of regions in multiuser
information theory (auxiliary variables).

Borrowing and lending of techniques for evaluation and single-letterization

Method for proving optimality of Gaussians to recover Gross’s result (N ’14)
Establish a stronger extremal inequality. (Concave envelope characterization)

Establish the strong data-processing inequality between sums of i.i.d. random
variables (Kamath-N ’15) (mutual information characterization)

Implies (and strengthens) a result by Dembo et. al. on maximal correlations

Establish hypercontractivity for the binary erasure channel (relative entropy
characterization) (this talk).

Hypercontractivity region for the binary symmetric channel

Bonami’s inequality (famous result)

This paper: techniques recover yet another proof of this result.
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BINARY ERASURE CHANNEL WITH UNIFORM INPUTS

X

0

1

0

ε

ε

1− ε

1− ε

∗ Y

1

Figure: Binary erasure channel

Goal: Determine λ1, λ2 ≥ 1, 1
λ1

+ 1
λ2
≥ 1 such that

E(f (X)g(Y)) ≤ ‖f (X)‖λ1‖g(Y)‖λ2 .
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Goal: Determine λ1, λ2 ≥ 1, 1
λ1

+ 1
λ2
≥ 1 such that

E(f (X)g(Y)) ≤ ‖f (X)‖λ1‖g(Y)‖λ2 .

Correlation lower bound [’70s] (Necessary condition)
(λ1 − 1)(λ2 − 1) ≥ ρ2(X;Y); ρ(X,Y) = supf ,g:E(f )=E(g)=0

E(f 2)=E(g2)=1

E(f (X)g(Y)).
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+ 1
λ2
≥ 1 such that

E(f (X)g(Y)) ≤ ‖f (X)‖λ1‖g(Y)‖λ2 .

Correlation lower bound [’70s] (Necessary condition) - BSC
(λ1 − 1)(λ2 − 1) ≥ (1− 2p)2.
Sufficiency: Bonami’s inequality
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MAIN RESULT

Question (to me) by V. Guruswami and J. Radhakrishnan:
Is correlation bound tight for BEC?

Theorem (Tightness of correlation lower bound)
For BEC the correlation bound is tight, i.e. (X,Y) is (λ1, λ2)-hypercontractive for
(λ1 − 1)(λ2 − 1) = 1− ε, if and only if the following condition is satisfied:

ε− 1
2
≤ 3

2
(λ2 − 1).

Remarks:
Always holds when ε ≤ 1

2
Holds for all ε if λ2 ≥ 4

3 .
Idea of the proof:

λ2 ≥ 2: Mimic Janson’s proof technique for BSC (i.e. Bonami-Beckner)
Remainder of regime

Use the relative entropy characterization
Inspired by Friedgut’s proof for BSC for case λ1 = λ2 = ρ.
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CASE 1: λ2 ≥ 2

We have (λ1 − 1)(λ2 − 1) = 1− ε. Need to show that

‖E(f (X)|Y)‖λ′2 ≤ ‖f (X)‖λ1 ∀f (X),

where λ′2 = λ2
λ2−1 , the Hölder conjugate.

Let f (0) = 1− δ, f (1) = 1 + δ. Need to show[
1− ε

2
(1− δ)λ′2 + 1− ε

2
(1 + δ)λ

′
2 + ε

] 1
λ′2 ≤

[
1
2
(1− δ)λ1 +

1
2
(1 + δ)λ1

] 1
λ1
.

For k ≥ 1, since 1 ≤ λ1 ≤ λ′2 ≤ 2 immediate that

(1− ε)
(
λ′2
2k

)
≤ λ′2
λ1

(
λ1

2k

)
.
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REMARKS

The previous argument

Essentially due to Janson

Works for any BMS (binary memoryless symmetric)
W(Y = i|X = 1) = W(Y = −i|X = −1) = µi, i = 1, ..,K
Necessary & Sufficient: (λ1 − 1)(λ2 − 1) =

∑K
i=1

(µi−µ−i)
2

µi+µ−i
, λ2 ≥ 2.

Similar reasoning can be extended for λ2 ≥ 3
2 .

Could not (does not) extend to λ2 ≥ 4
3 .
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CASE 2: λ2 < 2 AND ε− 1
2 ≤

3
2(λ2 − 1)

(λ1 − 1)(λ2 − 1) = 1− ε.

We wish to show that max νXY(� µBEC
XY )

1
λ1

D(νX‖µBEC
X ) +

1
λ2

D(νY‖µBEC
Y )− D(νXY‖µBEC

XY ) =

{
0 ε− 1

2 ≤
3
2(λ2 − 1)

> 0 o.w.

Easy: maximum will occur in the interior.

Stationarity conditions yield (Friedgut)

k =
1
λ1

ln(ν00 + ν0∗)−
1
λ′2

ln
ν00

1− ε

k =
1
λ1

ln(ν11 + ν1∗)−
1
λ′2

ln
ν11

1− ε

k =
1
λ1

ln(ν00 + ν0∗) +
1
λ2

ln(ν0∗ + ν1∗)−
1
λ2

ln 2− ln ν0∗ +
1
λ′2

ln ε

k =
1
λ1

ln(ν11 + ν1∗) +
1
λ2

ln(ν0∗ + ν1∗)−
1
λ2

ln 2− ln ν1∗ +
1
λ′2

ln ε

CN,YW (CUHK) ISIT 2016 Jul 11, 2016 9 / 14



CASE 2: λ2 < 2 AND ε− 1
2 ≤

3
2(λ2 − 1)

(λ1 − 1)(λ2 − 1) = 1− ε.

We wish to show that max νXY(� µBEC
XY )

1
λ1

D(νX‖µBEC
X ) +

1
λ2

D(νY‖µBEC
Y )− D(νXY‖µBEC

XY ) =

{
0 ε− 1

2 ≤
3
2(λ2 − 1)

> 0 o.w.

Easy: maximum will occur in the interior.

Stationarity conditions yield (Friedgut)

k =
1
λ1

ln(ν00 + ν0∗)−
1
λ′2

ln
ν00

1− ε

k =
1
λ1

ln(ν11 + ν1∗)−
1
λ′2

ln
ν11

1− ε

k =
1
λ1

ln(ν00 + ν0∗) +
1
λ2

ln(ν0∗ + ν1∗)−
1
λ2

ln 2− ln ν0∗ +
1
λ′2

ln ε

k =
1
λ1

ln(ν11 + ν1∗) +
1
λ2

ln(ν0∗ + ν1∗)−
1
λ2

ln 2− ln ν1∗ +
1
λ′2

ln ε

CN,YW (CUHK) ISIT 2016 Jul 11, 2016 9 / 14



CASE 2: λ2 < 2 AND ε− 1
2 ≤

3
2(λ2 − 1)

(λ1 − 1)(λ2 − 1) = 1− ε.

We wish to show that max νXY(� µBEC
XY )

1
λ1

D(νX‖µBEC
X ) +

1
λ2

D(νY‖µBEC
Y )− D(νXY‖µBEC

XY ) =

{
0 ε− 1

2 ≤
3
2(λ2 − 1)

> 0 o.w.

Easy: maximum will occur in the interior.

Stationarity conditions yield (Friedgut)

k =
1
λ1

ln(ν00 + ν0∗)−
1
λ′2

ln
ν00

1− ε

k =
1
λ1

ln(ν11 + ν1∗)−
1
λ′2

ln
ν11

1− ε

k =
1
λ1

ln(ν00 + ν0∗) +
1
λ2

ln(ν0∗ + ν1∗)−
1
λ2

ln 2− ln ν0∗ +
1
λ′2

ln ε

k =
1
λ1

ln(ν11 + ν1∗) +
1
λ2

ln(ν0∗ + ν1∗)−
1
λ2

ln 2− ln ν1∗ +
1
λ′2

ln ε

CN,YW (CUHK) ISIT 2016 Jul 11, 2016 9 / 14



SOME CALCULATIONS

From stationarity conditions we get

ν0∗
ν1∗

=

(
ν00 + ν0∗
ν11 + ν1∗

) 1
λ1
, ν00 =

ν
λ′2
0∗2λ

′
2−1

(ν0∗ + ν1∗)
λ′2−1

1− ε
ε

,

(1− ε)x
ε

λ2−1 + εx
ε−1
λ2−1 = (1− ε)(2− x)

ε
λ2−1 + ε(2− x)

ε−1
λ2−1 ,

where x = 2ν0∗
ν1∗+ν0∗

.
To note: Corresponding to each solution of x ∈ [0, 2] there is a single stationary point.

Lemma

For x ∈ [0, 2], λ2 ∈ (1, 2), ε ∈ (0, 1) the following equation

(1− ε)x
ε

λ2−1 + εx
ε−1
λ2−1 = (1− ε)(2− x)

ε
λ2−1 + ε(2− x)

ε−1
λ2−1 .

has only one root at x = 1 if (ε− 1
2) ≤

3
2(λ2 − 1).

Proof: show that the difference between the sides decreases in [0, 1].
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CASE: (ε− 1
2) >

3
2(λ2 − 1)

νXY =

 (1−δ)λ
′
2 (1−ε)

A
ε(1−δ)

A 0

0 ε(1+δ)
A

(1−ε)(1+δ)λ
′
2

A


where A = 2ε+ (1− ε)[(1 + δ)λ

′
2 + (1− δ)λ′2 ].

Taylor series expansion of the term

1
λ1

D(νX‖µBEC
X ) +

1
λ2

D(νY‖µBEC
Y )

− D(νXY‖µBEC
XY )

around δ = 0 yields an expansion

1
24
ε(1− ε)(λ′2 − 1)2((2ε− 1)(λ′2 − 1)− 3)δ4 + O(δ6).

Q.E.D.
CN,YW (CUHK) ISIT 2016 Jul 11, 2016 11 / 14



CASE: (ε− 1
2) >

3
2(λ2 − 1)

νXY =

 (1−δ)λ
′
2 (1−ε)

A
ε(1−δ)

A 0

0 ε(1+δ)
A

(1−ε)(1+δ)λ
′
2

A


where A = 2ε+ (1− ε)[(1 + δ)λ

′
2 + (1− δ)λ′2 ].

Taylor series expansion of the term

1
λ1

D(νX‖µBEC
X ) +

1
λ2

D(νY‖µBEC
Y )

− D(νXY‖µBEC
XY )

around δ = 0 yields an expansion

1
24
ε(1− ε)(λ′2 − 1)2((2ε− 1)(λ′2 − 1)− 3)δ4 + O(δ6).

Q.E.D.
CN,YW (CUHK) ISIT 2016 Jul 11, 2016 11 / 14



BINARY SYMMETRIC CHANNEL

Take (λ1 − 1)(λ2 − 1) = ρ2. As before look at stationarity conditions:

There is a one-to-one mapping between stationary points and roots of the equation

xt( 1−θ
1+θ )

2

=
(1 + θx)tθ + (θ + x)t

(θ + x)tθ + (1 + θx)t ,

where θ = 1−ρ
1+ρ .

Lemma

For any t ∈ (0,∞) and θ ∈ (0, 1) ∪ (1,∞) the equation

xt( 1−θ
1+θ )

2

=
(1 + θx)tθ + (θ + x)t

(θ + x)tθ + (1 + θx)t

has only one root at x = 1 for x ∈ (0,∞).

This implies that the relative entropy characterization is satisfied when
(λ1 − 1)(λ2 − 1) = ρ2, proving the tightness of correlation lower bound.
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SUMMARY

What we saw

Equivalent characterizations can be very useful for precise characterization or
bounds
Local optimality test were sufficient for BEC

Not an isolated observation

Tomorrow: more on such inequalities and generalizations.
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Thank You
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