Hypercontractivity parameters using information measures

Chandra Nair, Yan Nan Wang
The Chinese University of Hong Kong

Jul 11, 2016

DEFINITIONS AND EQUIVALENT CHARACTERIZATIONS

$(X, Y) \sim \mu_{X Y}$ is said to be $\left(\lambda_{1}, \lambda_{2}\right)$-hypercontractive if

$$
\mathrm{E}(f(X) g(Y)) \leq\|f(X)\|_{\lambda_{1}}\|g(Y)\|_{\lambda_{2}} \quad \forall f(X), g(Y) .
$$

Interested in $\lambda_{1}, \lambda_{2} \geq 1$ and $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \geq 1$. (Notation: $\|Z\|_{\lambda}=\mathrm{E}\left(|Z|^{\lambda}\right)^{1 / \lambda}$.)

DEFINITIONS AND EQUIVALENT CHARACTERIZATIONS

$(X, Y) \sim \mu_{X Y}$ is said to be $\left(\lambda_{1}, \lambda_{2}\right)$-hypercontractive if

$$
\mathrm{E}(f(X) g(Y)) \leq\|f(X)\|_{\lambda_{1}}\|g(Y)\|_{\lambda_{2}} \quad \forall f(X), g(Y) .
$$

Interested in $\lambda_{1}, \lambda_{2} \geq 1$ and $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \geq 1$. (Notation: $\|Z\|_{\lambda}=\mathrm{E}\left(|Z|^{\lambda}\right)^{1 / \lambda}$.)
Equivalent characterizations:
(1) A simple exercise

$$
\|\mathrm{E}(g(Y) \mid X)\|_{\lambda_{1}^{\prime}} \leq\|g(Y)\|_{\lambda_{2}} \quad \forall g(Y) . \quad \frac{1}{\lambda_{1}^{\prime}}=1-\frac{1}{\lambda_{1}} .
$$

(2) Using relative entropies (Carlen - Cordero-Erasquin '09, N '14, Friedgut ' 15)

$$
\frac{1}{\lambda_{1}} D\left(\nu_{X} \| \mu_{X}\right)+\frac{1}{\lambda_{2}} D\left(\nu_{Y} \| \mu_{Y}\right) \leq D\left(\nu_{X Y} \| \mu_{X Y}\right) \quad \forall \nu_{X Y} \ll \mu_{X Y} .
$$

DEFINITIONS AND EQUIVALENT CHARACTERIZATIONS

$(X, Y) \sim \mu_{X Y}$ is said to be $\left(\lambda_{1}, \lambda_{2}\right)$-hypercontractive if

$$
\mathrm{E}(f(X) g(Y)) \leq\|f(X)\|_{\lambda_{1}}\|g(Y)\|_{\lambda_{2}} \quad \forall f(X), g(Y) .
$$

Interested in $\lambda_{1}, \lambda_{2} \geq 1$ and $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \geq 1$. (Notation: $\|Z\|_{\lambda}=\mathrm{E}\left(|Z|^{\lambda}\right)^{1 / \lambda}$.)
Equivalent characterizations:
(1) A simple exercise

$$
\|\mathrm{E}(g(Y) \mid X)\|_{\lambda_{1}^{\prime}} \leq\|g(Y)\|_{\lambda_{2}} \quad \forall g(Y) . \quad \frac{1}{\lambda_{1}^{\prime}}=1-\frac{1}{\lambda_{1}} .
$$

(2) Using relative entropies (Carlen - Cordero-Erasquin '09, N ' 14 , Friedgut ' 15)

$$
\frac{1}{\lambda_{1}} D\left(\nu_{X} \| \mu_{X}\right)+\frac{1}{\lambda_{2}} D\left(\nu_{Y} \| \mu_{Y}\right) \leq D\left(\nu_{X Y} \| \mu_{X Y}\right) \quad \forall \nu_{X Y} \ll \mu_{X Y} .
$$

(3) Using mutual information and auxiliary variables ($\mathrm{N}^{\prime} 14$)

$$
\frac{1}{\lambda_{1}} I(U ; X)+\frac{1}{\lambda_{2}} I(U ; Y) \leq I(U ; X Y) \quad \forall \mu_{U \mid X Y}
$$

EQUIVALENT CHARACTERIZATIONS: CTD

(9) Using concave envelopes of a functional ($\mathrm{N}^{\prime} 14$)

$$
\mathfrak{C}\left[H(X Y)-\frac{1}{\lambda_{1}} H(X)-\frac{1}{\lambda_{2}} H(Y)\right]_{\mu_{X Y}}=H_{\mu}(X Y)-\frac{1}{\lambda_{1}} H_{\mu}(X)-\frac{1}{\lambda_{2}} H_{\mu}(Y) .
$$

EQUIVALENT CHARACTERIZATIONS: CTD

(9) Using concave envelopes of a functional ($\mathrm{N}^{\prime} 14$)

$$
\mathfrak{C}\left[H(X Y)-\frac{1}{\lambda_{1}} H(X)-\frac{1}{\lambda_{2}} H(Y)\right]_{\mu_{X Y}}=H_{\mu}(X Y)-\frac{1}{\lambda_{1}} H_{\mu}(X)-\frac{1}{\lambda_{2}} H_{\mu}(Y) .
$$

Question 1: Why is hypercontractivity useful (in information theory)?

EQUIVALENT CHARACTERIZATIONS: CTD

(9) Using concave envelopes of a functional ($\mathrm{N}^{\prime} 14$)

$$
\mathfrak{C}\left[H(X Y)-\frac{1}{\lambda_{1}} H(X)-\frac{1}{\lambda_{2}} H(Y)\right]_{\mu_{X Y}}=H_{\mu}(X Y)-\frac{1}{\lambda_{1}} H_{\mu}(X)-\frac{1}{\lambda_{2}} H_{\mu}(Y) .
$$

Question 1: Why is hypercontractivity useful (in information theory)?

- Hungarian school ('73-): interested in characterizing "image sizes" over noisy channels
- An input set $\mathcal{B} \subseteq \mathcal{X}^{n}$
- Image: union of typical outputs of each point in \mathcal{B} when passed through a noisy channel

EQUIVALENT CHARACTERIZATIONS: CTD

(9) Using concave envelopes of a functional ($\mathrm{N}^{\prime} 14$)

$$
\mathfrak{C}\left[H(X Y)-\frac{1}{\lambda_{1}} H(X)-\frac{1}{\lambda_{2}} H(Y)\right]_{\mu_{X Y}}=H_{\mu}(X Y)-\frac{1}{\lambda_{1}} H_{\mu}(X)-\frac{1}{\lambda_{2}} H_{\mu}(Y) .
$$

Question 1: Why is hypercontractivity useful (in information theory)?

- Hungarian school ('73-): interested in characterizing "image sizes" over noisy channels
- An input set $\mathcal{B} \subseteq \mathcal{X}^{n}$
- Image: union of typical outputs of each point in \mathcal{B} when passed through a noisy channel
- Wanted to understand feasible communication rates
- Strong converses to coding theorems

Some relevant publications:

- Rudolf Ahlswede and Peter Gács. "Spreading of sets in product spaces and hypercontraction of the Markov operator". In: The Annals of Probability (1976), pp. 925-939
- J Körner and K Marton. "Images of a set via two channels and their role in Mult-User Communication". In: IEEE Trans. Info. Theory IT-23 (Nov, 1977), pp. 751-761

Hypercontractivity and Information Theory

Question 2: Why are these equivalent characterizations useful?

Hypercontractivity and Information Theory

Question 2: Why are these equivalent characterizations useful?
Evaluation of hypercontractivity parameters has been very useful

- Measure concentration, quantum physics, theoretical computer science

Hypercontractivity and Information Theory

Question 2: Why are these equivalent characterizations useful?

Evaluation of hypercontractivity parameters has been very useful

- Measure concentration, quantum physics, theoretical computer science
- Ties up evaluation of hypercontractivity to computation of regions in multiuser information theory (auxiliary variables).
- Borrowing and lending of techniques for evaluation and single-letterization

Hypercontractivity and Information Theory

Question 2: Why are these equivalent characterizations useful?

Evaluation of hypercontractivity parameters has been very useful

- Measure concentration, quantum physics, theoretical computer science
- Ties up evaluation of hypercontractivity to computation of regions in multiuser information theory (auxiliary variables).
- Borrowing and lending of techniques for evaluation and single-letterization
- Method for proving optimality of Gaussians to recover Gross's result ($\mathrm{N}^{\text {' }} 14$)
- Establish a stronger extremal inequality. (Concave envelope characterization)

Hypercontractivity and Information Theory

Question 2: Why are these equivalent characterizations useful?

Evaluation of hypercontractivity parameters has been very useful

- Measure concentration, quantum physics, theoretical computer science
- Ties up evaluation of hypercontractivity to computation of regions in multiuser information theory (auxiliary variables).
- Borrowing and lending of techniques for evaluation and single-letterization
- Method for proving optimality of Gaussians to recover Gross's result (N '14)
- Establish a stronger extremal inequality. (Concave envelope characterization)
- Establish the strong data-processing inequality between sums of i.i.d. random variables (Kamath-N '15) (mutual information characterization)
- Implies (and strengthens) a result by Dembo et. al. on maximal correlations

Hypercontractivity and Information Theory

Question 2: Why are these equivalent characterizations useful?
Evaluation of hypercontractivity parameters has been very useful

- Measure concentration, quantum physics, theoretical computer science
- Ties up evaluation of hypercontractivity to computation of regions in multiuser information theory (auxiliary variables).
- Borrowing and lending of techniques for evaluation and single-letterization
- Method for proving optimality of Gaussians to recover Gross's result (N '14)
- Establish a stronger extremal inequality. (Concave envelope characterization)
- Establish the strong data-processing inequality between sums of i.i.d. random variables (Kamath-N ' 15) (mutual information characterization)
- Implies (and strengthens) a result by Dembo et. al. on maximal correlations
- Establish hypercontractivity for the binary erasure channel (relative entropy characterization) (this talk).

Hypercontractivity and Information Theory

Question 2: Why are these equivalent characterizations useful?

Evaluation of hypercontractivity parameters has been very useful

- Measure concentration, quantum physics, theoretical computer science
- Ties up evaluation of hypercontractivity to computation of regions in multiuser information theory (auxiliary variables).
- Borrowing and lending of techniques for evaluation and single-letterization
- Method for proving optimality of Gaussians to recover Gross's result ($\mathrm{N}^{~ ' 14) ~}$
- Establish a stronger extremal inequality. (Concave envelope characterization)
- Establish the strong data-processing inequality between sums of i.i.d. random variables (Kamath-N ' 15) (mutual information characterization)
- Implies (and strengthens) a result by Dembo et. al. on maximal correlations
- Establish hypercontractivity for the binary erasure channel (relative entropy characterization) (this talk).
Hypercontractivity region for the binary symmetric channel
- Bonami's inequality (famous result)
- This paper: techniques recover yet another proof of this result.

BINARY ERASURE CHANNEL WITH UNIFORM INPUTS

Figure: Binary erasure channel

Goal: Determine $\lambda_{1}, \lambda_{2} \geq 1, \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \geq 1$ such that

$$
E(f(X) g(Y)) \leq\|f(X)\|_{\lambda_{1}}\|g(Y)\|_{\lambda_{2}}
$$

BINARY ERASURE CHANNEL WITH UNIFORM INPUTS

Figure: Binary erasure channel

Goal: Determine $\lambda_{1}, \lambda_{2} \geq 1, \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \geq 1$ such that

$$
E(f(X) g(Y)) \leq\|f(X)\|_{\lambda_{1}}\|g(Y)\|_{\lambda_{2}} .
$$

Correlation lower bound ['70s] (Necessary condition)

$$
\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) \geq \rho^{2}(X ; Y) ; \quad \rho(X, Y)=\sup _{f, g: \mathrm{E}(f)=\mathrm{E}(g)=0}^{\mathrm{E}\left(f^{2}\right)=\mathrm{E}\left(g^{2}\right)=1}<\mathrm{E}(f(X) g(Y))
$$

BINARY ERASURE CHANNEL WITH UNIFORM INPUTS

Figure: Binary erasure channel

Goal: Determine $\lambda_{1}, \lambda_{2} \geq 1, \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \geq 1$ such that

$$
E(f(X) g(Y)) \leq\|f(X)\|_{\lambda_{1}}\|g(Y)\|_{\lambda_{2}} .
$$

Correlation lower bound ['70s] (Necessary condition) - BEC $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) \geq 1-\epsilon$.

BINARY ERASURE CHANNEL WITH UNIFORM INPUTS

Figure: Binary erasure channel

Goal: Determine $\lambda_{1}, \lambda_{2} \geq 1, \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}} \geq 1$ such that

$$
E(f(X) g(Y)) \leq\|f(X)\|_{\lambda_{1}}\|g(Y)\|_{\lambda_{2}}
$$

Correlation lower bound ['70s] (Necessary condition) - BSC $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) \geq(1-2 p)^{2}$.
Sufficiency: Bonami's inequality

MAIN RESULT

Question (to me) by V. Guruswami and J. Radhakrishnan:

- Is correlation bound tight for BEC?

MAIN RESULT

Question (to me) by V. Guruswami and J. Radhakrishnan:

- Is correlation bound tight for BEC?

Theorem (Tightness of correlation lower bound)

For BEC the correlation bound is tight, i.e. (X, Y) is $\left(\lambda_{1}, \lambda_{2}\right)$-hypercontractive for $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$, if and only if the following condition is satisfied:

$$
\epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right) .
$$

MAIN RESULT

Question (to me) by V. Guruswami and J. Radhakrishnan:

- Is correlation bound tight for BEC?

Theorem (Tightness of correlation lower bound)

For BEC the correlation bound is tight, i.e. (X, Y) is $\left(\lambda_{1}, \lambda_{2}\right)$-hypercontractive for $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$, if and only if the following condition is satisfied:

$$
\epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right) .
$$

Remarks:

- Always holds when $\epsilon \leq \frac{1}{2}$
- Holds for all ϵ if $\lambda_{2} \geq \frac{4}{3}$.

MAIN RESULT

Question (to me) by V. Guruswami and J. Radhakrishnan:

- Is correlation bound tight for BEC?

Theorem (Tightness of correlation lower bound)

For BEC the correlation bound is tight, i.e. (X, Y) is $\left(\lambda_{1}, \lambda_{2}\right)$-hypercontractive for $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$, if and only if the following condition is satisfied:

$$
\epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right) .
$$

Remarks:

- Always holds when $\epsilon \leq \frac{1}{2}$
- Holds for all ϵ if $\lambda_{2} \geq \frac{4}{3}$.

Idea of the proof:

- $\lambda_{2} \geq 2$: Mimic Janson's proof technique for BSC (i.e. Bonami-Beckner)
- Remainder of regime
- Use the relative entropy characterization
- Inspired by Friedgut's proof for BSC for case $\lambda_{1}=\lambda_{2}=\rho$.

CASE 1: $\lambda_{2} \geq 2$

We have $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$. Need to show that

$$
\|\mathrm{E}(f(X) \mid Y)\|_{\lambda_{2}^{\prime}} \leq\|f(X)\|_{\lambda_{1}} \quad \forall f(X)
$$

where $\lambda_{2}^{\prime}=\frac{\lambda_{2}}{\lambda_{2}-1}$, the Hölder conjugate.

CASE 1: $\lambda_{2} \geq 2$

We have $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$. Need to show that

$$
\|\mathrm{E}(f(X) \mid Y)\|_{\lambda_{2}^{\prime}} \leq\|f(X)\|_{\lambda_{1}} \quad \forall f(X)
$$

where $\lambda_{2}^{\prime}=\frac{\lambda_{2}}{\lambda_{2}-1}$, the Hölder conjugate.
Let $f(0)=1-\delta, f(1)=1+\delta$. Need to show

$$
\left[\frac{1-\epsilon}{2}(1-\delta)^{\lambda_{2}^{\prime}}+\frac{1-\epsilon}{2}(1+\delta)^{\lambda_{2}^{\prime}}+\epsilon\right]^{\frac{1}{\lambda_{2}}} \leq\left[\frac{1}{2}(1-\delta)^{\lambda_{1}}+\frac{1}{2}(1+\delta)^{\lambda_{1}}\right]^{\frac{1}{\lambda_{1}}} .
$$

CASE 1: $\lambda_{2} \geq 2$

We have $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$. Need to show that

$$
\|\mathrm{E}(f(X) \mid Y)\|_{\lambda_{2}^{\prime}} \leq\|f(X)\|_{\lambda_{1}} \quad \forall f(X)
$$

where $\lambda_{2}^{\prime}=\frac{\lambda_{2}}{\lambda_{2}-1}$, the Hölder conjugate.
Let $f(0)=1-\delta, f(1)=1+\delta$. Need to show

$$
\left[\frac{1-\epsilon}{2}(1-\delta)^{\lambda_{2}^{\prime}}+\frac{1-\epsilon}{2}(1+\delta)^{\lambda_{2}^{\prime}}+\epsilon\right]^{\frac{1}{\lambda_{2}}} \leq\left[\frac{1}{2}(1-\delta)^{\lambda_{1}}+\frac{1}{2}(1+\delta)^{\lambda_{1}}\right]^{\frac{1}{\lambda_{1}}} .
$$

Rewriting

$$
1+(1-\epsilon) \sum_{k=1}^{\infty}\binom{\lambda_{2}^{\prime}}{2 k} \delta^{2 k} \leq\left(1+\sum_{k=1}^{\infty}\binom{\lambda_{1}}{2 k} \delta^{2 k}\right)^{\frac{\lambda_{2}^{\prime}}{\lambda_{1}}}
$$

CASE 1: $\lambda_{2} \geq 2$

We have $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$. Need to show that

$$
\|\mathrm{E}(f(X) \mid Y)\|_{\lambda_{2}^{\prime}} \leq\|f(X)\|_{\lambda_{1}} \quad \forall f(X),
$$

where $\lambda_{2}^{\prime}=\frac{\lambda_{2}}{\lambda_{2}-1}$, the Hölder conjugate.
Let $f(0)=1-\delta, f(1)=1+\delta$. Need to show

$$
\left[\frac{1-\epsilon}{2}(1-\delta)^{\lambda_{2}^{\prime}}+\frac{1-\epsilon}{2}(1+\delta)^{\lambda_{2}^{\prime}}+\epsilon\right]^{\frac{1}{\lambda_{2}^{\prime}}} \leq\left[\frac{1}{2}(1-\delta)^{\lambda_{1}}+\frac{1}{2}(1+\delta)^{\lambda_{1}}\right]^{\frac{1}{\lambda_{1}}}
$$

Suffices to show that (since $\left.(1+x)^{a} \geq(1+a x), a>1, x>0\right)$

$$
1+(1-\epsilon) \sum_{k=1}^{\infty}\binom{\lambda_{2}^{\prime}}{2 k} \delta^{2 k} \leq 1+\frac{\lambda_{2}^{\prime}}{\lambda_{1}} \sum_{k=1}^{\infty}\binom{\lambda_{1}}{2 k} \delta^{2 k} \leq\left(1+\sum_{k=1}^{\infty}\binom{\lambda_{1}}{2 k} \delta^{2 k}\right)^{\frac{\lambda_{2}^{\prime}}{\lambda_{1}}}
$$

CASE 1: $\lambda_{2} \geq 2$

We have $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$. Need to show that

$$
\|\mathrm{E}(f(X) \mid Y)\|_{\lambda_{2}^{\prime}} \leq\|f(X)\|_{\lambda_{1}} \quad \forall f(X)
$$

where $\lambda_{2}^{\prime}=\frac{\lambda_{2}}{\lambda_{2}-1}$, the Hölder conjugate.
Let $f(0)=1-\delta, f(1)=1+\delta$. Need to show

$$
\left[\frac{1-\epsilon}{2}(1-\delta)^{\lambda_{2}^{\prime}}+\frac{1-\epsilon}{2}(1+\delta)^{\lambda_{2}^{\prime}}+\epsilon\right]^{\frac{1}{\lambda_{2}^{\prime}}} \leq\left[\frac{1}{2}(1-\delta)^{\lambda_{1}}+\frac{1}{2}(1+\delta)^{\lambda_{1}}\right]^{\frac{1}{\lambda_{1}}} .
$$

Suffices to show that (since $\left.(1+x)^{a} \geq(1+a x), a>1, x>0\right)$

$$
1+(1-\epsilon) \sum_{k=1}^{\infty}\binom{\lambda_{2}^{\prime}}{2 k} \delta^{2 k} \leq 1+\frac{\lambda_{2}^{\prime}}{\lambda_{1}} \sum_{k=1}^{\infty}\binom{\lambda_{1}}{2 k} \delta^{2 k} \leq\left(1+\sum_{k=1}^{\infty}\binom{\lambda_{1}}{2 k} \delta^{2 k}\right)^{\frac{\lambda_{2}^{\prime}}{\lambda_{1}}}
$$

For $k \geq 1$, since $1 \leq \lambda_{1} \leq \lambda_{2}^{\prime} \leq 2$ immediate that

$$
(1-\epsilon)\binom{\lambda_{2}^{\prime}}{2 k} \leq \frac{\lambda_{2}^{\prime}}{\lambda_{1}}\binom{\lambda_{1}}{2 k} .
$$

REMARKS

The previous argument

- Essentially due to Janson
- Works for any BMS (binary memoryless symmetric)
- $W(Y=i \mid X=1)=W(Y=-i \mid X=-1)=\mu_{i}, \quad i=1, . ., K$
- Necessary \& Sufficient: $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=\sum_{i=1}^{K} \frac{\left(\mu_{i}-\mu_{-i}\right)^{2}}{\mu_{i}+\mu_{-i}}, \quad \lambda_{2} \geq 2$.

REMARKS

The previous argument

- Essentially due to Janson
- Works for any BMS (binary memoryless symmetric)
- $W(Y=i \mid X=1)=W(Y=-i \mid X=-1)=\mu_{i}, i=1, . ., K$
- Necessary \& Sufficient: $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=\sum_{i=1}^{K} \frac{\left(\mu_{i}-\mu_{-i}\right)^{2}}{\mu_{i}+\mu_{-i}}, \quad \lambda_{2} \geq 2$.
- Similar reasoning can be extended for $\lambda_{2} \geq \frac{3}{2}$.

REMARKS

The previous argument

- Essentially due to Janson
- Works for any BMS (binary memoryless symmetric)
- $W(Y=i \mid X=1)=W(Y=-i \mid X=-1)=\mu_{i}, i=1, . ., K$
- Necessary \& Sufficient: $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=\sum_{i=1}^{K} \frac{\left(\mu_{i}-\mu_{-i}\right)^{2}}{\mu_{i}+\mu_{-i}}, \quad \lambda_{2} \geq 2$.
- Similar reasoning can be extended for $\lambda_{2} \geq \frac{3}{2}$.
- Could not (does not) extend to $\lambda_{2} \geq \frac{4}{3}$.

CASE 2: $\lambda_{2}<2$ AND $\epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right)$

$\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$.
We wish to show that $\max \nu_{X Y}\left(\ll \mu_{X Y}^{B E C}\right)$
$\frac{1}{\lambda_{1}} D\left(\nu_{X} \| \mu_{X}^{B E C}\right)+\frac{1}{\lambda_{2}} D\left(\nu_{Y} \| \mu_{Y}^{B E C}\right)-D\left(\nu_{X Y} \| \mu_{X Y}^{B E C}\right)=\left\{\begin{array}{cl}0 & \epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right) \\ >0 & \text { o.w. }\end{array}\right.$

CASE 2: $\lambda_{2}<2$ AND $\epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right)$

$\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$.
We wish to show that $\max \nu_{X Y}\left(\ll \mu_{X Y}^{B E C}\right)$
$\frac{1}{\lambda_{1}} D\left(\nu_{X} \| \mu_{X}^{B E C}\right)+\frac{1}{\lambda_{2}} D\left(\nu_{Y} \| \mu_{Y}^{B E C}\right)-D\left(\nu_{X Y} \| \mu_{X Y}^{B E C}\right)=\left\{\begin{array}{cl}0 & \epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right) \\ >0 & \text { o.w. }\end{array}\right.$
Easy: maximum will occur in the interior.

CASE 2: $\lambda_{2}<2$ AND $\epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right)$

$\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=1-\epsilon$.
We wish to show that $\max \nu_{X Y}\left(\ll \mu_{X Y}^{B E C}\right)$
$\frac{1}{\lambda_{1}} D\left(\nu_{X} \| \mu_{X}^{B E C}\right)+\frac{1}{\lambda_{2}} D\left(\nu_{Y} \| \mu_{Y}^{B E C}\right)-D\left(\nu_{X Y} \| \mu_{X Y}^{B E C}\right)=\left\{\begin{array}{cl}0 & \epsilon-\frac{1}{2} \leq \frac{3}{2}\left(\lambda_{2}-1\right) \\ >0 & \text { o.w. }\end{array}\right.$

Easy: maximum will occur in the interior.
Stationarity conditions yield (Friedgut)

$$
\begin{aligned}
k & =\frac{1}{\lambda_{1}} \ln \left(\nu_{00}+\nu_{0 *}\right)-\frac{1}{\lambda_{2}^{\prime}} \ln \frac{\nu_{00}}{1-\epsilon} \\
k & =\frac{1}{\lambda_{1}} \ln \left(\nu_{11}+\nu_{1 *}\right)-\frac{1}{\lambda_{2}^{\prime}} \ln \frac{\nu_{11}}{1-\epsilon} \\
k & =\frac{1}{\lambda_{1}} \ln \left(\nu_{00}+\nu_{0 *}\right)+\frac{1}{\lambda_{2}} \ln \left(\nu_{0 *}+\nu_{1 *}\right)-\frac{1}{\lambda_{2}} \ln 2-\ln \nu_{0 *}+\frac{1}{\lambda_{2}^{\prime}} \ln \epsilon \\
k & =\frac{1}{\lambda_{1}} \ln \left(\nu_{11}+\nu_{1 *}\right)+\frac{1}{\lambda_{2}} \ln \left(\nu_{0 *}+\nu_{1 *}\right)-\frac{1}{\lambda_{2}} \ln 2-\ln \nu_{1 *}+\frac{1}{\lambda_{2}^{\prime}} \ln \epsilon
\end{aligned}
$$

Some calculations

From stationarity conditions we get

$$
\begin{aligned}
& \frac{\nu_{0 *}}{\nu_{1 *}}=\left(\frac{\nu_{00}+\nu_{0 *}}{\nu_{11}+\nu_{1 *}}\right)^{\frac{1}{\lambda_{1}}}, \quad \nu_{00}=\frac{\nu_{0 *}^{\lambda_{2}^{\prime}} 2^{\lambda_{2}^{\prime}-1}}{\left(\nu_{0 *}+\nu_{1 *}\right)^{\lambda_{2}^{\prime}-1}} \frac{1-\epsilon}{\epsilon}, \\
& (1-\epsilon) x^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon x^{\frac{\epsilon-1}{\lambda_{2}-1}}=(1-\epsilon)(2-x)^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon(2-x)^{\frac{\epsilon-1}{\lambda_{2}-1}}
\end{aligned}
$$

where $x=\frac{2 \nu_{0 *}}{\nu_{1 *}+\nu_{0 *}}$.
To note: Corresponding to each solution of $x \in[0,2]$ there is a single stationary point.

Some calculations

From stationarity conditions we get

$$
\begin{aligned}
& \frac{\nu_{0 *}}{\nu_{1 *}}=\left(\frac{\nu_{00}+\nu_{0 *}}{\nu_{11}+\nu_{1 *}}\right)^{\frac{1}{\lambda_{1}}}, \quad \nu_{00}=\frac{\nu_{0 *}^{\lambda_{2}^{\prime}} 2^{\lambda_{2}^{\prime}-1}}{\left(\nu_{0 *}+\nu_{1 *}\right)^{\lambda_{2}^{\prime}-1}} \frac{1-\epsilon}{\epsilon}, \\
& (1-\epsilon) x^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon x^{\frac{\epsilon-1}{\lambda_{2}-1}}=(1-\epsilon)(2-x)^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon(2-x)^{\frac{\epsilon-1}{\lambda_{2}-1}}
\end{aligned}
$$

where $x=\frac{2 \nu_{0 *}}{\nu_{1 *}+\nu_{0 *}}$.
To note: Corresponding to each solution of $x \in[0,2]$ there is a single stationary point.

Lemma

For $x \in[0,2], \lambda_{2} \in(1,2), \epsilon \in(0,1)$ the following equation

$$
(1-\epsilon) x^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon x^{\frac{\epsilon-1}{\lambda_{2}-1}}=(1-\epsilon)(2-x)^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon(2-x)^{\frac{\epsilon-1}{\lambda_{2}-1}} .
$$

has only one root at $x=1$ if $\left(\epsilon-\frac{1}{2}\right) \leq \frac{3}{2}\left(\lambda_{2}-1\right)$.

Some calculations

From stationarity conditions we get

$$
\begin{aligned}
& \frac{\nu_{0 *}}{\nu_{1 *}}=\left(\frac{\nu_{00}+\nu_{0 *}}{\nu_{11}+\nu_{1 *}}\right)^{\frac{1}{\lambda_{1}}}, \quad \nu_{00}=\frac{\nu_{0 *}^{\lambda_{2}^{\prime}} 2^{\lambda_{2}^{\prime}-1}}{\left(\nu_{0 *}+\nu_{1 *}\right)^{\lambda_{2}^{\prime}-1}} \frac{1-\epsilon}{\epsilon}, \\
& (1-\epsilon) x^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon x^{\frac{\epsilon-1}{\lambda_{2}-1}}=(1-\epsilon)(2-x)^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon(2-x)^{\frac{\epsilon-1}{\lambda_{2}-1}}
\end{aligned}
$$

where $x=\frac{2 \nu_{0 *}}{\nu_{1 *}+\nu_{0 *}}$.
To note: Corresponding to each solution of $x \in[0,2]$ there is a single stationary point.

Lemma

For $x \in[0,2], \lambda_{2} \in(1,2), \epsilon \in(0,1)$ the following equation

$$
(1-\epsilon) x^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon x^{\frac{\epsilon-1}{\lambda_{2}-1}}=(1-\epsilon)(2-x)^{\frac{\epsilon}{\lambda_{2}-1}}+\epsilon(2-x)^{\frac{\epsilon-1}{\lambda_{2}-1}} .
$$

has only one root at $x=1$ if $\left(\epsilon-\frac{1}{2}\right) \leq \frac{3}{2}\left(\lambda_{2}-1\right)$.
Proof: show that the difference between the sides decreases in $[0,1]$.

CASE: $\left(\epsilon-\frac{1}{2}\right)>\frac{3}{2}\left(\lambda_{2}-1\right)$

$$
\nu_{X Y}=\left[\begin{array}{ccc}
\frac{(1-\delta)^{\lambda_{2}^{\prime}}(1-\epsilon)}{A} & \frac{\epsilon(1-\delta)}{A} & 0 \\
0 & \frac{\epsilon(1+\delta)}{A} & \frac{(1-\epsilon)(1+\delta)^{\lambda_{2}^{\prime}}}{A}
\end{array}\right]
$$

where $A=2 \epsilon+(1-\epsilon)\left[(1+\delta)^{\lambda_{2}^{\prime}}+(1-\delta)^{\lambda_{2}^{\prime}}\right]$.

CASE: $\left(\epsilon-\frac{1}{2}\right)>\frac{3}{2}\left(\lambda_{2}-1\right)$

$$
\nu_{X Y}=\left[\begin{array}{ccc}
\frac{(1-\delta)^{\lambda_{2}^{\prime}}(1-\epsilon)}{A} & \frac{\epsilon(1-\delta)}{A} & 0 \\
0 & \frac{\epsilon(1+\delta)}{A} & \frac{(1-\epsilon)(1+\delta)^{\lambda_{2}^{\prime}}}{A}
\end{array}\right]
$$

where $A=2 \epsilon+(1-\epsilon)\left[(1+\delta)^{\lambda_{2}^{\prime}}+(1-\delta)^{\lambda_{2}^{\prime}}\right]$.
Taylor series expansion of the term

$$
\begin{aligned}
& \frac{1}{\lambda_{1}} D\left(\nu_{X} \| \mu_{X}^{B E C}\right)+\frac{1}{\lambda_{2}} D\left(\nu_{Y} \| \mu_{Y}^{B E C}\right) \\
& \quad-D\left(\nu_{X Y} \| \mu_{X Y}^{B E C}\right)
\end{aligned}
$$

around $\delta=0$ yields an expansion

$$
\frac{1}{24} \epsilon(1-\epsilon)\left(\lambda_{2}^{\prime}-1\right)^{2}\left((2 \epsilon-1)\left(\lambda_{2}^{\prime}-1\right)-3\right) \delta^{4}+O\left(\delta^{6}\right)
$$

Q.E.D.

BINARY SYMMETRIC CHANNEL

Take $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=\rho^{2}$. As before look at stationarity conditions:
There is a one-to-one mapping between stationary points and roots of the equation

$$
x^{t\left(\frac{1-\theta}{1+\theta}\right)^{2}}=\frac{(1+\theta x)^{t} \theta+(\theta+x)^{t}}{(\theta+x)^{t} \theta+(1+\theta x)^{t}},
$$

where $\theta=\frac{1-\rho}{1+\rho}$.

BINARY SYMMETRIC CHANNEL

Take $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=\rho^{2}$. As before look at stationarity conditions:
There is a one-to-one mapping between stationary points and roots of the equation

$$
x^{t\left(\frac{1-\theta}{1+\theta}\right)^{2}}=\frac{(1+\theta x)^{t} \theta+(\theta+x)^{t}}{(\theta+x)^{t} \theta+(1+\theta x)^{t}},
$$

where $\theta=\frac{1-\rho}{1+\rho}$.

Lemma

For any $t \in(0, \infty)$ and $\theta \in(0,1) \cup(1, \infty)$ the equation

$$
x^{t\left(\frac{1-\theta}{1+\theta}\right)^{2}}=\frac{(1+\theta x)^{t} \theta+(\theta+x)^{t}}{(\theta+x)^{t} \theta+(1+\theta x)^{t}}
$$

has only one root at $x=1$ for $x \in(0, \infty)$.

BINARY SYMMETRIC CHANNEL

Take $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=\rho^{2}$. As before look at stationarity conditions:
There is a one-to-one mapping between stationary points and roots of the equation

$$
x^{t\left(\frac{1-\theta}{1+\theta}\right)^{2}}=\frac{(1+\theta x)^{t} \theta+(\theta+x)^{t}}{(\theta+x)^{t} \theta+(1+\theta x)^{t}},
$$

where $\theta=\frac{1-\rho}{1+\rho}$.

Lemma

For any $t \in(0, \infty)$ and $\theta \in(0,1) \cup(1, \infty)$ the equation

$$
x^{t\left(\frac{1-\theta}{1+\theta}\right)^{2}}=\frac{(1+\theta x)^{t} \theta+(\theta+x)^{t}}{(\theta+x)^{t} \theta+(1+\theta x)^{t}}
$$

has only one root at $x=1$ for $x \in(0, \infty)$.
This implies that the relative entropy characterization is satisfied when $\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)=\rho^{2}$, proving the tightness of correlation lower bound.

Summary

What we saw

- Equivalent characterizations can be very useful for precise characterization or bounds

Summary

What we saw

- Equivalent characterizations can be very useful for precise characterization or bounds
- Local optimality test were sufficient for BEC
- Not an isolated observation

Summary

What we saw

- Equivalent characterizations can be very useful for precise characterization or bounds
- Local optimality test were sufficient for BEC
- Not an isolated observation

Tomorrow: more on such inequalities and generalizations.

Thank You

