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Abstract—We use an equivalent characterization of hyper-
contractive parameters using relative entropy to compute the
hypercontractive region for the binary erasure channel. A sim-
ilar analysis also recovers the celebrated result for the binary
symmetric channel, also called the Bonami-Beckner inequality.

I. INTRODUCTION

Hypercontractive inequalities play an important role in

many areas of mathematics and computer science. A

pair of random variables (X,Y ) is said to be (λ1, λ2)-
hypercontractive, for λ1, λ2 ∈ (1,∞), if

E(f(X)g(Y )) ≤ ‖f(X)‖λ1
‖g(Y )‖λ2

holds for all non-negative functions f(·), g(·). Remark: While

the above definition is rather non-standard we use this equiv-

alent parameterization (see [1] for a more standard notation

that is easily mappable to the current one) since it makes our

notation easier. In the above, we adopt the following notation

for λ-th norm of random variables:

‖Z‖λ := E(|Z|λ)
1
λ .

From Hölder’s inequality and monotonicity of norm, it is

immediate that if
1

λ1
+

1

λ2
≤ 1

then the above inequality holds. We only consider finite

valued random variables in this paper, though the standard

machine (where finite valued random variables are called

simple functions) enables the extension of the characterizations

to families of general random variables.

There were several equivalent characterizations of the above

condition using information measures derived in [2]. One of

the characterization using divergence, stated below, can also be

inferred from an earlier work [3]. The wording of the theorem

below is adapted and modified from the sources to conform

to the notation used in this paper.

Theorem 1 ( [3], [2]). Consider a pair of random variables

(X,Y ) distributed according to µXY . The following two

assertions are equivalent:

(i) For all non-negative functions f(·), g(·),

E(f(X)g(Y )) ≤ ‖f(X)‖λ1
‖g(Y )‖λ2

(ii) For every νXY (≪ µXY ) we have1

1

λ1
D(νX‖µX) +

1

λ2
D(νY ‖µY ) ≤ D(νXY ‖µXY ).

A necessary condition for (X,Y ) to be (λ1, λ2)-
hypercontractive is presented in the following theorem.

Theorem 2 (Correlation lower bound, [4]). A pair of random

variables is (λ1, λ2)-hypercontractive, for λ1, λ2 ∈ (1,∞),
only if

(λ1 − 1)(λ2 − 1) ≥ ρ2,

where ρ2 is the maximal correlation between the pair (X,Y ).

Determining the exact (or even sufficient) conditions for hy-

percontractivity has been a subject of active research in math.

When (X,Y ) is DSBS (doubly symmetric binary source) or

when they are jointly Gaussian a complete characterization

has been known since the 70s and these were celebrated

results. In this paper we provide a complete characterization

of the hypercontractive inequalities when a uniform X is

passed through a binary erasure channel BEC(ǫ) to produce

Y , when 0 < ǫ ≤ 1
2 , and a partial characterization of the

hypercontractive inequalities when ǫ ∈ (12 , 1). Furthermore

our techniques can be used to derive an alternate proof of the

result for the DSBS case. The proof startegy here has been

motivated by that of Friedgut [5] where he establishes the

DSBS case for λ1 = λ2. Thus the results here also generalize

his result.

II. BINARY ERASURE CHANNEL

Consider a uniform binary random variable X passed

through a binary erasure channel BEC(ǫ) producing the ternary

output Y . Let µBEC
XY denote the joint law. The correlation

inner bound for this setting says that (X,Y ) is (λ1, λ2)
hypercontractive for λ1, λ2 ∈ (1,∞) only if

(λ1 − 1)(λ2 − 1) ≥ 1− ǫ.

The theorem below (main new result of this paper) determines

the set of parameters for which correlation bound is tight, i.e.

yields the hypercontractive region.

1The notation ν ≪ µ stands for absolute continuity of measure ν with
respect to measure µ.



Theorem 3. Let (X,Y ) distributed according to µBEC
XY and

λ1, λ2 ∈ (1,∞) satisfy (λ1−1)(λ2−1) = 1−ǫ. Then (X,Y )
is (λ1, λ2)-hypercontractive, i.e. the correlation bound is tight,

if and only if the following condition is satisfied:

ǫ−
1

2
≤

3

2
(λ2 − 1).

Remark 1. If ǫ ≤ 1
2 then the correlation inner bound is tight;

else it turns out to be tight only for a subset of the regime of

parameters.

Proof. The proof is divided into two parts. In the first part,

we will establish the result for λ2 ≥ 2 directly using the

definition of hypercontractivity, by mimicking Janson’s proof

[6] for the DSBS case. For λ2 < 2 we will use the equivalent

characterization using divergences to provide a proof.

Case 1: λ2 ≥ 2. Let λ1 be defined according to (λ1 −
1)(λ2 − 1) = 1 − ǫ. We wish to show that for all functions

f(·), g(·) the inequality

E(f(X)g(Y )) ≤ ‖f(X)‖λ1
‖g(Y )‖λ2

holds. Observe that, by using Hölder’s inequality,

E(f(X)g(Y )) = E(E(f(X)|Y )g(Y ))

≤ ‖E(f(X)|Y )‖λ′

2
‖g(Y )‖λ2

.

Here λ′
2 ∈ (1, 2] is the Hölder conjugate of λ2. Hence showing

(in fact this is an equivalent condition) the following suffices

‖E(f(X)|Y )‖λ′

2
≤ ‖f(X)‖λ1

.

W.l.o.g. let f(0) = 1 − δ, f(1) = 1 + δ. Then the above

inequality reduces to

[

1− ǫ

2
(1− δ)λ

′

2 +
1− ǫ

2
(1 + δ)λ

′

2 + ǫ

]
1

λ′

2

≤

[

1

2
(1 − δ)λ1 +

1

2
(1 + δ)λ1

]
1
λ1

.

That is, suffices that

1 + (1− ǫ)

∞
∑

k=1

(

λ′
2

2k

)

δ2k ≤

(

1 +

∞
∑

k=1

(

λ1

2k

)

δ2k

)

λ′

2
λ1

To get the above reduction we use the multiplicative formula

extension of binomial co-efficients and the infinite power

series

(1 + x)α = 1 +
∞
∑

k=1

(

α

k

)

xk, |x| < 1.

Substituting for λ1 we see that
λ′

2

λ1
= λ2

λ2−ǫ
> 1. Since

(1 + x)a geq1 + ax (a > 1, x > 0), it suffices to show that

1 + (1− ǫ)
∞
∑

k=1

(

λ′
2

2k

)

δ2k ≤ 1 +
λ′
2

λ1

∞
∑

k=1

(

λ1

2k

)

δ2k

Since 1 < λ1 ≤ λ′
2 ≤ 2 the inequality is easily seen to be true

by comparing the coefficients of δ2k term by term (all terms

are non-negative). Equality holds for k = 1 and for all other

powers it is an inequality, in general. (See Remark 2 at the

end of next section.)

Case 2: λ2 < 2. We use the equivalent characterization

using divergences in this case. Again let (λ1 − 1)(λ2 − 1) =
1− ǫ. We wish to show that

max
νXY ≪µBEC

XY

1

λ1
D(νX‖µBEC

X ) +
1

λ2
D(νY ‖µ

BEC
Y )

−D(νXY ‖µ
BEC
XY ) =

{

0 ǫ− 1
2 ≤ 3

2 (λ2 − 1)

> 0 o.w.

It is easy to see that the maximum has to be an interior

point by considering the behavior at the boundaries. This is

primarily because the last term has an infinite slope at the

boundaries and since λ1, λ2 > 1 this infinite slope cannot be

completely canceled by the first two terms. We omit the details

of this calculation here.

Thus the main part of the proof is to show that there is

only one interior stationary point νXY = µBEC
XY when ǫ− 1

2 ≤
3
2 (λ2 − 1) and otherwise, νXY = µBEC

XY is not even a local

maximum.

For any (strictly) interior stationary points, the Lagrange

conditions yield

k =
1

λ1
ln(ν00 + ν0E)−

1

λ′
2

ln
ν00

1− ǫ
(1a)

k =
1

λ1
ln(ν11 + ν1E)−

1

λ′
2

ln
ν11

1− ǫ
(1b)

k =
1

λ1
ln(ν00 + ν0E) +

1

λ2
ln(ν0E + ν1E)−

1

λ2
ln 2

− ln ν0E +
1

λ′
2

ln ǫ (1c)

k =
1

λ1
ln(ν11 + ν1E) +

1

λ2
ln(ν0E + ν1E)−

1

λ2
ln 2

− ln ν1E +
1

λ′
2

ln ǫ (1d)

Equating (1c) and (1d) yields

ν0E

ν1E
=

(

ν00 + ν0E

ν11 + ν1E

)
1
λ1

. (2a)

Equating (1a) and (1c) yields

ν00 =
ν
λ′

2

0E2
λ′

2−1

(ν0E + ν1E)λ
′

2
−1

1− ǫ

ǫ
. (2b)

Equating (1b) and (1d) yields

ν11 =
ν
λ′

2

1E2
λ′

2−1

(ν0E + ν1E)λ
′

2
−1

1− ǫ

ǫ
. (2c)

Substituting for ν00 and ν11 using (2b) and (2c) in (2a), setting

x = 2ν0E
ν0E+ν1E

∈ [0, 2] and using (λ1 − 1)(λ2 − 1) = 1− ǫ we

obtain

(1− ǫ)x
ǫ

λ2−1 + ǫx
ǫ−1

λ2−1

= (1− ǫ)(2− x)
ǫ

λ2−1 + ǫ(2− x)
ǫ−1

λ2−1 .

From Lemma 1 we know that the above equation has exactly

one solution, x = 1, when (ǫ − 1
2 ) ≤

3
2 (λ2 − 1). Thus under



the above condition on (λ2, ǫ) every interior stationary point

must satisfy ν0E = ν1E . Further from (2b) and (2c) we can

conclude that

ν00

1− ǫ
=

ν11

1− ǫ
=

ν0E

ǫ
=

ν1E

ǫ
,

implying that the only stationary point (hence global maxi-

mizer) is νXY = µBEC
XY , which yields a maximum value 0 as

desired.

When (ǫ− 1
2 )(λ2 − 1) > 3

2 , choose

νXY =

[

(1−δ)λ
′

2 (1−ǫ)
A

ǫ(1−δ)
A

0

0 ǫ(1+δ)
A

(1−ǫ)(1+δ)λ
′

2

A

]

where A = 2ǫ+(1−ǫ)[(1+δ)λ
′

2+(1−δ)λ
′

2 ] is the normalizing

constant. Taylor series expansion of the term

1

λ1
D(νX‖µBEC

X ) +
1

λ2
D(νY ‖µ

BEC
Y )

−D(νXY ‖µ
BEC
XY )

around δ = 0 yields an expansion

1

24
ǫ(1− ǫ)(λ′

2 − 1)2((2ǫ− 1)(λ′
2 − 1)− 3)δ4 +O(δ6)

which is positive when

ǫ−
1

2
>

3

2
(λ2 − 1),

yielding that the maximum of the function is strictly positive

under these parameter settings.

Lemma 1. For x ∈ [0, 2], λ2 ∈ (1, 2), ǫ ∈ (0, 1) the following

equation

(1− ǫ)x
ǫ

λ2−1 + ǫx
ǫ−1

λ2−1

= (1− ǫ)(2− x)
ǫ

λ2−1 + ǫ(2− x)
ǫ−1

λ2−1 .

has only one root at x = 1 if (ǫ− 1
2 ) ≤

3
2 (λ2 − 1).

Proof. Clearly x = 1 is a root of this equation. Denote

p− 1 = 1
λ2−1 . Note that p ∈ (2,∞). Define the function g(x)

g(x) =
1− ǫ

ǫ
x(p−1)ǫ + x(p−1)(ǫ−1)

−
1− ǫ

ǫ
(2 − x)(p−1)ǫ − (2− x)(p−1)(ǫ−1)

g(1) = 0, limx↓0 g(x) = +∞. Further g(x) = −g(2 − x).
The statement follows by showing g(x) decreases over (0, 1)
if (p− 1)(ǫ− 1

2 ) ≤
3
2 .

Take the derivative with respect to x,

g′(x) =(1− ǫ)(p− 1)[xpǫ−ǫ−1 − xpǫ−p−ǫ

+ (2 − x)pǫ−ǫ−1 − (2− x)pǫ−p−ǫ]

Let y = 1 − x, where y ∈ (0, 1) and let r = pǫ − ǫ − p+1
2 ,

then g′(x) ≤ 0 is equivalent to

(1− y)r[(1− y)−
p−1

2 − (1− y)
p−1

2 ]

≥ (1 + y)r[(1 + y)
p−1

2 − (1 + y)−
p−1

2 ]).

Observe that r ≤ 1
2 is equivalent to (ǫ − 1

2 ) ≤ 3
2 (λ2 − 1).

So we are done if we show that the above inequality holds

for any r ≤ 1
2 and p > 2. Further since

(

1−y
1+y

)r

decreases

in r, it suffices to show the inequality for r = 1
2 and p > 2.

Substituting r = 1
2 and rearranging, we wish to show

(1− y)−
p

2
+1 + (1 + y)−

p

2
+1 ≥ (1 + y)

p

2 + (1 − y)
p

2 .

Performing a Taylor series expansion, it suffices to show

2[1 +
∞
∑

k=1

(

1− p
2

2k

)

y2k] ≥ 2[1 +
∞
∑

k=1

( p
2

2k

)

y2k]

Note that the first term (k = 1) is equal for both sides and is

positive (in the case that p > 2). For k ≥ 2 it is immediate

(by expanding the binomial term) that

(

1− p
2

2k

)

≥ max

{

0,

( p
2

2k

)}

.

This completes the proof of the lemma.

III. BINARY INPUT SYMMETRIC OUTPUT CHANNEL

Consider a (X,Y ) where X is binary and uniformly dis-

tributed, and Y is obtained via a channel W (y|x) that satisfies

a symmetry property, W (Y = i|X = 1) = W (Y = −i|X =
−1) = µi, for −K ≤ i ≤ K . This class contains both the

Binary erasure channel and the binary symmetric channel. Let

µBISO
XY denote the joint law of this pair of random variables.

The correlation inner bound (a simple calculation) for this

setting says that (X,Y ) is (λ1, λ2)-hypercontractive only if

(λ1 − 1)(λ2 − 1) ≥

K
∑

i=1

(µi − µ−i)
2

µi + µ−i

.

Proposition 1. For any λ2 ≥ 2, the pair (X,Y ) is (λ1, λ2)-
hypercontractive for any pair of λ1, λ2 satisfying the correla-

tion bound.

Proof. The proof mimics the proof of Case 1 in the proof of

Theorem 3. Following the approach we need to show that

‖E(f(X)|Y )‖λ′

2
≤ ‖f(X)‖λ1

.

Further, by monotonicity of norm, it suffices to restrict to

(λ1 − 1)(λ2 − 1) =

K
∑

i=1

(µi − µ−i)
2

µi + µ−i

.

W.l.o.g. let f(−1) = 1 − δ, f(1) = 1 + δ. Then the above

inequality reduces to showing

K
∑

i=−K

µi + µ−i

2

(

1− δ
µi − µ−i

µi + µ−i

)λ′

2

≤

[

1

2
(1− δ)λ1 +

1

2
(1 + δ)λ1

]

λ′

2
λ1

.



Observing that
λ′

2

λ1
≥ 1, taking the binomial expansion of both

sides (as earlier) and using (1 + x)a ≥ 1 + ax, a > 1, x ≥ 0,

it suffices to show

1 +
∞
∑

k=1

(

λ′
2

2k

)

δ2k

(

K
∑

i=−K

µi + µ−i

2

(

µi − µ−i

µi + µ−i

)2k
)

≤ 1 +
λ′
2

λ1

∞
∑

k=1

(

λ1

2k

)

δ2k.

Comparing term by term, we see that equality holds when

k = 1 and the inequality holds for other terms since k ≥ 2
implies

K
∑

i=−K

µi + µ−i

2

(

µi − µ−i

µi + µ−i

)2k

≤

K
∑

i=−K

µi + µ−i

2

(

µi − µ−i

µi + µ−i

)2

.

This completes the proof of the proposition.

Remark 2. A key observation in the above argument is that

when 1 < λ1 ≤ λ′
2 ≤ 2, the terms

(

λ1

2k

)

and
(

λ′

2

2k

)

are non-

negative for any k ≥ 1; ρ2
(

λ′

2

2

)

=
λ′

2

λ1

(

λ1

2

)

(where ρ2 is the

correlation); and for j ≥ 2 the term j−λ′
2 ≥ j−λ1 allowing

one to conclude the term by term relation. This is essentially a

borrow of the argument in [6] for the binary symmetric channel

(BSC) scenario. We provide an alternate proof of BSC in the

coming section. .

IV. BINARY SYMMETRIC CHANNEL

Consider a uniformly distributed binary valued X and Y ob-

tained by passing X through a BSC with crossover probability
1−ρ
2 . The hypercontractivity for this pair of (X,Y ) ∼ µBSC

XY

has been established since the 70s and there are various proofs

in the literature. The simplest one, according to the authors,

is the one due to Janson [6]. This section yields yet another

proof of the celebrated Bonami-Beckner inequality starting

from the divergence characterization. Friedgut [5] established

a proof along the very same lines for a particular choice

λ1 = λ2 = 1 + |ρ|, and this proof generalizes the proof to

all parameters.

The key result in BSC is that the correlation lower bound

is tight.

Theorem 4 (Bonami-Beckner; alternate proof provided here).

For (X,Y ) distributed according µBSC
XY , the pair is (λ1, λ2)

hypercontractive if

(λ1 − 1)(λ2 − 1) ≥ ρ2.

Proof. When ρ = 0 the result is trivial and follows from the

monotonicity of norm. Hence, we assume that ρ 6= 0. The

proof mimics that of Case 2 of the BEC proof. We consider,

w.l.o.g. the pair (λ1, λ2) satisfying (λ1−1)(λ2−1) = ρ2. We

are required to show that

max
νXY ≪µBSC

XY

1

λ1
D(νX‖µBSC

X ) +
1

λ2
D(νY ‖µ

BSC
Y )

−D(νXY ‖µ
BSC
XY ) = 0.

It is rather elementary to see that the boundary points cannot

be the maximizers; so we will only consider the interior points.

The idea is to show that there is only one interior stationary

point at νXY = µBSC
XY .

For any (strictly) interior stationary points, the Lagrange
conditions yield

k =
1

λ1

ln(ν00 + ν01) +
1

λ2

ln(ν00 + ν10)− ln
ν00

1 + ρ
(3a)

k =
1

λ1

ln(ν00 + ν01) +
1

λ2

ln(ν01 + ν11)− ln
ν01

1− ρ
(3b)

k =
1

λ1

ln(ν10 + ν11) +
1

λ2

ln(ν00 + ν10)− ln
ν10

1− ρ
(3c)

k =
1

λ1

ln(ν10 + ν11) +
1

λ2

ln(ν01 + ν11)− ln
ν11

1 + ρ
(3d)

By considering equations (3a) and (3c); and (3b) and (3d) we

obtain
(

ν00 + ν01

ν10 + ν11

)
1
λ1

=
ν00

ν10

1− ρ

1 + ρ
=

ν01

ν11

1 + ρ

1− ρ
= x (4)

Similarly considering equations (3a) and (3b); and (3c) and

(3d) we obtain

(

ν00 + ν10

ν01 + ν11

)
1
λ2

=
ν00

ν01

1− ρ

1 + ρ
=

ν10

ν11

1 + ρ

1− ρ
(5)

Since ν00 + ν01+ ν10 + ν11 = 1, denoting θ = 1−ρ
1+ρ

∈ (0, 1)∪
(1,∞) (since ρ 6= 0), elementary manipulations show that x

satisfies the following equation

xλ1−1 =
(1 + θx)

1
λ2−1 θ + (θ + x)

1
λ2−1

(θ + x)
1

λ2−1 θ + (1 + θx)
1

λ2−1

.

Since (λ1−1)(λ2−1) = ρ2 =
(

1−θ
1+θ

)2

, denoting by t = 1
λ2−1 ,

we obtain that x satisfies

xt( 1−θ
1+θ )

2

=
(1 + θx)tθ + (θ + x)t

(θ + x)tθ + (1 + θx)t
.

From Lemma 2, we could know that the equation above has

only one root x = 1. Therefore there is exactly one stationary

point, νXY = µBSC
XY . This ensures that the maximum of the

divergence expression is zero and completes the proof.

Lemma 2. For any t ∈ (0,∞) and θ ∈ (0, 1) ∪ (1,∞) the

equation

xt( 1−θ
1+θ )

2

=
(1 + θx)tθ + (θ + x)t

(θ + x)tθ + (1 + θx)t

has only one root at x = 1 for x ∈ (0,∞).

Proof. Let x = eh and define

g(h) = ln
(

(1 + θeh)tθ + (θ + eh)t
)

.



Taking logarithms of the equation in Lemma 2 and making

above substitutions, we wish to show that

ht

(

1− θ

1 + θ

)2

= g(h)− g(−h)− ht

has exactly one zero at h = 0. Define

r(h) = g(h)− g(−h)− ht− ht

(

1− θ

1 + θ

)2

.

We will show that r′(h) ≤ 0 implying the desired result.

Note that

r′(h) = g′(h) + g′(−h)− t− t

(

1− θ

1 + θ

)2

.

Observe that

g′(h) = t

(

θ2eh(1 + θeh)t−1 + eh(θ + eh)t−1

(1 + θeh)tθ + (θ + eh)t

)

= t

(

1− θ

(

(1 + θeh)t−1 + (θ + eh)t−1

(1 + θeh)tθ + (θ + eh)t

))

.

Substituting this into r′(h), and after performing elementary

manipulations, the condition r′(h) ≤ 0 becomes equivalent to

verifying

4

(1 + θ)2
≤

(

(1 + θeh)t−1 + (θ + eh)t−1

(1 + θeh)tθ + (θ + eh)t

)

+ eh
(

(1 + θeh)t−1 + (θ + eh)t−1

(1 + θeh)t + θ(θ + eh)t

)

.

The above condition can be re-expressed as
(

(1 + θeh)t−1 + (θ + eh)t−1
) (

(1 + θeh)t+1 + (θ + eh)t+1
)

≥
4

(1 + θ)2
(

(1 + θeh)tθ + (θ + eh)t
)

×
(

(1 + θeh)t + θ(θ + eh)t
)

.

Elementary algebraic manipulation reduces the above to
(

1− θ

1 + θ

)2
(

(1 + θeh)t − (θ + eh)t
)2

+ (1 + θeh)t−1(θ + eh)t−1(1 + θeh − θ − eh)2 ≥ 0,

which trivially holds. Furthermore, equality holds only at h =
0 implying that r(h) = 0 only at h = 0.

V. DISCUSSION AND CONCLUSION

The hypercontractivity parameters for pairs of binary ran-

dom variables through a symmetric channel is derived in

many regimes. We also obtain a proof of the Bonami-Beckner

inequality (the BSC case). An interesting observation is that

when correlation inner bound was tight, it turned out that

the non-convex optimization problem had only one station-

ary point. For the case of binary input symmetric output

channels we showed that the correlation inner bound is tight

for λ2 ≥ 2. However numerical simulations indicate that

perhaps the correlation inner bound is tight until λ2 ≥ 4
3 ;

indicating yet another example of binary erasure channel being

the opposite extremal (the other one is BSC) case among the

space of binary input symmetric output channels. We were

led to investigating the uniqueness of stationary point after

hearing Friedgut present his proof for a particular parameter

of the BSC case. The determination of hypercontractivity

parameter for the binary erasure channel was a question

posed to the first author by Jaikumar Radhakrishnan and

Venkat Guruswami during the Simon’s institute semester long

program in information theory.

For the binary erasure channel, one can extend the proof

technique borrowed from [6] to the parameter regime λ2 ≥ 3
2 .

However for rest of the regimes, the only proof we could

obtain was using the divergence characterization.

Subsequent to the initial submission of this work the

authors have also managed to characterize, using the same

techniques, the reverse hypercontractive regions for various

binary symmetric channels - some completely and some in

certain parameter regimes.
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