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Introduction

A non-convex functional family of interest
Given a vector of discrete random variables Xn := (X1, · · · , Xn) taking values in
⊗ni=1Xi and dXn : ⊗ni=1Xi → R some arbitrary vector:

G(dXn) := max
pXn

 ∑
S⊂[1:n]

αSH(XS)− EpXn (dXn)

 ,
where S is a subset of [1 : n], XS denotes the set {Xi : i ∈ S}, and αS ∈ R depends
on S.

The non-convexity arises since αS can be positive or negative.

Why is this functional family interesting?
The evaluation of certain achievable rate regions or bounds to the capacity
region canonically involves functionals of the above form.

If the global optimizers of a natural “product”-extension of a functional
(corresponding to an achievable rate region) are product distributions, then the
achievable rate regions can be shown to be optimal in many settings.

WANG Yannan Non-convex Functionals in IT June 2021 2 / 45



Introduction

A non-convex functional family of interest
Given a vector of discrete random variables Xn := (X1, · · · , Xn) taking values in
⊗ni=1Xi and dXn : ⊗ni=1Xi → R some arbitrary vector:

G(dXn) := max
pXn

 ∑
S⊂[1:n]

αSH(XS)− EpXn (dXn)

 ,
where S is a subset of [1 : n], XS denotes the set {Xi : i ∈ S}, and αS ∈ R depends
on S. The non-convexity arises since αS can be positive or negative.

Why is this functional family interesting?
The evaluation of certain achievable rate regions or bounds to the capacity
region canonically involves functionals of the above form.

If the global optimizers of a natural “product”-extension of a functional
(corresponding to an achievable rate region) are product distributions, then the
achievable rate regions can be shown to be optimal in many settings.

WANG Yannan Non-convex Functionals in IT June 2021 2 / 45



Introduction

A non-convex functional family of interest
Given a vector of discrete random variables Xn := (X1, · · · , Xn) taking values in
⊗ni=1Xi and dXn : ⊗ni=1Xi → R some arbitrary vector:

G(dXn) := max
pXn

 ∑
S⊂[1:n]

αSH(XS)− EpXn (dXn)

 ,
where S is a subset of [1 : n], XS denotes the set {Xi : i ∈ S}, and αS ∈ R depends
on S. The non-convexity arises since αS can be positive or negative.

Why is this functional family interesting?
The evaluation of certain achievable rate regions or bounds to the capacity
region canonically involves functionals of the above form.

If the global optimizers of a natural “product”-extension of a functional
(corresponding to an achievable rate region) are product distributions, then the
achievable rate regions can be shown to be optimal in many settings.

WANG Yannan Non-convex Functionals in IT June 2021 2 / 45



Lossless source coding with one helper

Sender 1: f (n)
1

Sender 2: f (n)
2

Receiver: g(n)Y n

Xn

Ŷ n
M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Figure 1: Lossless source coding with one helper

What is the optimal rate region R(pXY )?
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What is the optimal rate region R(pXY )?

Theorem 1.1, [Ahlswede-Körner 1975; Wyner 1975]

Let (X,Y ) ∼ pXY be a discrete memoryless source. The optimal rate region R(pXY )
for loseless source coding of Y with a helper observing X is the set of rate pairs
(R1, R2) such that

R1 ≥H(Y |U),
R2 ≥I(U ;X)

for some conditional pmf pU |X , where |U| ≤ |X |+ 1.
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What is the optimal rate region R(pXY )?
The optimal rate region is always convex by time-sharing argument.

Evaluation of the region: using weighted sum rates (supporting hyperplanes)

min
(R1,R2) achievable

R1 + γR2 = min
pU|X

H(Y |U) + γI(U ;X)

=γH(X) + min
pU|X

[H(Y |U)− γH(X|U)]

=γH(X)− CqX [γH(X)−H(Y )] (pX)

Non-trivial regime: γ ∈ (0, 1). It becomes a non-convex optimization problem.
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Upper Concave Envelope and Duality (Fenchel)
Define f(qX) := γH(X)−H(Y ).

Upper Concave Envelope and Lower Convex Envelope (Example on next slide)

CqX [f ] : = inf {g : g is concave w.r.t. qX and g(qX) ≥ f(qX),∀qX}
KqX [f ] : = −CqX [−f ]

Fenchel’s Dual Representation
Given dX = (dx, x ∈ X ) a real-valued vector of length |X |, the Fenchel-dual of the
function, f(qX), is

f †(dX) := sup
qX
{γH(X)−H(Y )− EqX (dX)} .

The dual variables dx define hyperplanes, and f †(dX) is convex in dX .
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KqX [f ] : = −CqX [−f ]

Fenchel’s Dual Representation
Given dX = (dx, x ∈ X ) a real-valued vector of length |X |, the Fenchel-dual of the
function, f(qX), is

f †(dX) := sup
qX
{γH(X)−H(Y )− EqX (dX)} .

CqX [f ](pX) = inf
dX

{
f †(dX) +

∑
x∈X

dxpX(x)
}

The dual of the dual yields the upper concave envelope.
Computing the dual of f †(dX) is a convex-optimization problem. Therefore, the
main difficulty lies in computing the dual function, f †(dX).
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Plot of Upper Concave Envelope

Simple Observation: Suffices to determine the extremal distributions, that is, the set
of pX satisfying CqX [f ](pX) = f(pX).
Example: Consider P(X = 0) = x,P(X = 1) = 1− x.
f(x) = 0.3H(X)−H(Y ) = 0.3H2(x)−H2(0.8x+ 0.2(1− x)).
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Outline

1 Hypercontractive Region Evaluation
Introduction to Hypercontractivity
Main Results on Hypercontractivity

2 Lower Bounds on Distributed Source Coding
Körner and Marton’s Modulo Two Sum Problem
Alternative Proofs to Quadratic Gaussian CEO Problem and Distributed Source
Coding Problem

3 Log-Convexity of Fisher Information
Motivations
Proof to log-convexity of Fisher information
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Hypercontractive Region Evaluation Introduction to Hypercontractivity

Definitions of Hypercontractivity
Hypercontractive Region Evaluation

Norm

||Z||λ := E(|Z|λ)
1
λ , λ 6= 0, (normalized λ moment); ||Z||0 := eE(log |Z|).

Forward hypercontractivity
A pair of random variables (X,Y ) is said to be (λ1, λ2) forward hypercontractive, for
λ1, λ2 ∈ (1,∞), if

E(f(X)g(Y )) ≤ ||f(X)||λ1 ||g(Y )||λ2

holds for all non-negative functions f(·), g(·).

Reverse hypercontractivity
A pair of random variables (X,Y ) is said to be (λ1, λ2) reverse hypercontractive, for
λ1, λ2 ∈ (−∞, 1), if

E(f(X)g(Y )) ≥ ||f(X)||λ1 ||g(Y )||λ2

holds for all positive functions f(·), g(·).
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Hypercontractive Region Evaluation Introduction to Hypercontractivity

Known hypercontractivity parameters

Binary Symmetric Channel (BSC) with uniform input: [Bonami 1970; Borell 1982]
Consider a uniformly distributed binary valued X and Y obtained by passing X
through a BSC with crossover probability 1−ρ

2 . (X,Y ) is (λ1, λ2) forward (reverse)
hypercontractive if and only if

(λ1 − 1)(λ2 − 1) ≥ ρ2

Gaussian: [Gross 1975, Borell 1982]

Let (X,Y ) ∼ N
(

0,
[
1 ρ
ρ 1

])
, (X,Y ) is (λ1, λ2) forward (reverse) hypercontractive if

and only if

(λ1 − 1)(λ2 − 1) ≥ ρ2

These hypercontractive parameters have found applications in theoretical computer
science, see [Kahn-Kalai-Linial 1988; Mossel-O’Donnell-Rubinfeld-Servedio 2006].
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Let (X,Y ) ∼ N
(

0,
[
1 ρ
ρ 1

])
, (X,Y ) is (λ1, λ2) forward (reverse) hypercontractive if

and only if

(λ1 − 1)(λ2 − 1) ≥ ρ2

These hypercontractive parameters have found applications in theoretical computer
science, see [Kahn-Kalai-Linial 1988; Mossel-O’Donnell-Rubinfeld-Servedio 2006].
A natural question (thanks: V. Guruswami and J. Radhakrishnan): What is the
hypercontractive region for binary erasure channel with uniform inputs?
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Hypercontractive Region Evaluation Introduction to Hypercontractivity

Equivalent characterizations of forward hypercontractivity
Hypercontractive Region Evaluation

Equivalent characterizations of hypercontractivity [Nair 2014]
Let (X,Y ) ∼ pXY . The following assertions are equivalent:

1 For all non-negative functions f(·), g(·),

E(f(X)g(Y )) ≤ ||f(X)||λ1 ||g(Y )||λ2

2 For every qXY (� pXY ) we have (also appeared in [Carlen-Cordero-Erausquin
2009])

1
λ1
D(qX ||pX) + 1

λ2
D(qY ||pY ) ≤ D(qXY ||pXY )

3 For every extension pU |XY such that I(U ;XY ) > 0 we have

1
λ1
I(U ;X) + 1

λ2
I(U ;Y ) ≤ I(U ;XY )

4 Let K[f ]x represents the lower convex envelope of the function f evaluated at x.

K
[ 1
λ1
H(X) + 1

λ2
H(Y )−H(XY )

]
pXY

= 1
λ1
H(X) + 1

λ2
H(Y )−H(XY )

This result builds on [Ahlswede-Gács 1976] and [Anantharam-Gohari-Kamath-Nair
2013].
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Hypercontractive Region Evaluation Introduction to Hypercontractivity

Equivalent characterizations of reverse hypercontractivity
[Beigi-Nair 2016]
Hypercontractive Region Evaluation

Denote the reverse hypercontractive region of (λ1, λ2) for a pair of random variables
(X,Y ) distributed according to pXY as Rr(X,Y ).

Equivalent characterizations of reverse hypercontractivity
1 The pair (λ1, λ2) with 0 < λ1 < 1, 0 < λ2 < 1 belongs to Rr(X,Y ) if and only if

for any qX and qY there exists rXY with rX = qX and rY = qY such that:
1
λ1
D(qX ||pX) + 1

λ2
D(qY ||pY ) ≥ D(rXY ||pXY )

2 The pair (λ1, λ2) with 0 < λ1 < 1, λ2 < 0 belongs to Rr(X,Y ) if and only if for
any qX there exists rXY with rX = qX such that:

1
λ1
D(qX ||pX) + 1

λ2
D(rY ||pY ) ≥ D(rXY ||pXY )

3 The pair (λ1, λ2) with λ1 < 0, 0 < λ2 < 1 belongs to to Rr(X,Y ) if and only if
for any qY there exists rXY with rY = qY such that:

1
λ1
D(rX ||pX) + 1

λ2
D(qY ||pY ) ≥ D(rXY ||pXY )
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Hypercontractive Region Evaluation Introduction to Hypercontractivity

Evaluation of (Reverse) Hypercontractivity Parameters
Hypercontractive Region Evaluation

Information Theory
Related to determining extremal distributions in multiuser information theory
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Hypercontractive Region Evaluation Introduction to Hypercontractivity

Gray-Wyner Source Coding
Hypercontractive Region Evaluation

Sender 1: f (n)
1

Sender 0: f (n)
0

Sender 2: f (n)
2

Receiver 1: g(n)
1

Receiver 2: g(n)
2

Xn, Y n

X̂n

Ŷ n

M1 ∈ [1 : 2nR1 )

M0 ∈ [1 : 2nR0 )

M2 ∈ [1 : 2nR2 )

Figure 2: Gray-Wyner Source Coding Setting
Theorem 2.1 [Gray-Wyner 1974]
The optimal rate region R(pXY ) is the set of rate triplets (R0, R1, R2) such that

R0 ≥I(X,Y ;V ),
R1 ≥H(X|V ),
R2 ≥H(Y |V )

(1)

for some conditional pmf pV |XY with |V| ≤ |X ||Y|+ 2.
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Hypercontractive Region Evaluation Introduction to Hypercontractivity

Gray-Wyner Source Coding Setting
Hypercontractive Region Evaluation

Evaluation of the region: using (γ1, γ2) weighted sum rates

minR0 + γ1R1 + γ2R2

= min I(XY ;V ) + γ1H(X|V ) + γ2H(Y |V )
=H(XY ) + K[γ1H(X) + γ2H(Y )−H(XY )]pXY

Observations [Beigi-Gohari 2015]:
Tensorization of forward hypercontractivity ⇔ Optimality of single letter
expression of Gray-Wyner System
{pXY : pXY is ( 1

γ1
, 1
γ2

) forward hypercontractive} ≡ the set of extremal
distributions pXY for computing the lower convex envelope in the Gray-Wyner
System
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Hypercontractive Region Evaluation Main Results on Hypercontractivity
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Main result 1: forward hypercontractive region

Binary Erasure Channel (BEC) with uniform input: [Nair-Wang 2016]
Consider a uniformly distributed binary valued X passed through a BEC with
erasure probability ε producing the ternary output Y . For λ1, λ2 ∈ (1,∞),

when ε− 1
2 ≤

3
2(λ2 − 1), the forward hypercontractive region for (X,Y ) is

characterized by (λ1 − 1)(λ2 − 1) ≥ 1− ε;
When ε− 1

2 >
3
2(λ2 − 1), the forward hypercontractive region for (X,Y ) is

strictly inside (λ1 − 1)(λ2 − 1) ≥ 1− ε.

Remarks:
(λ1 − 1)(λ2 − 1) ≥ 1− ε is tight when ε ≤ 1

2 ;
(λ1 − 1)(λ2 − 1) ≥ 1− ε is tight when λ2 ≥ 4

3 .
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Forward hypercontractive region for BEC with uniform input
Define λ′2 := λ2

λ2−1 , the Hölder conjugate of λ2.
When ε = 0.2,

1

1

0
λ′2 = λ2

λ2 − 1

λ1
λ1=(1−ε)λ′2+ε, (0<λ′2<1)

λ1=(1−ε)λ′2+ε, (λ′2>1)

λ1=λ′2

Figure 3: Forward hypercontractive region: ε = 0.2
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Main result 2: reverse hypercontractive region

Binary Erasure Channel (BEC) with uniform input: [Nair-Wang 2017]
Consider a uniformly distributed binary valued X passed through a BEC with
erasure probability ε producing the ternary output Y . When λ2 < 0, (X,Y ) is
(λ1, λ2) reverse hypercontractive if and only if

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]

Remarks:
The region (λ1 − 1)(λ2 − 1) ≥ 1− ε is not tight.
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Reverse hypercontractive region for BEC with uniform input
Define λ′2 := λ2

λ2−1 , the Hölder conjugate of λ2.
When ε = 0.2,

1

1

0
λ′2 = λ2

λ2 − 1

λ1
λ1=(1−ε)λ′2+ε, (0<λ′2<1)

λ1=(1−ε)λ′2+ε, (λ′2>1)

λ1=λ′2

Figure 4: Reverse hypercontractive region: ε = 0.2

WANG Yannan Non-convex Functionals in IT June 2021 17 / 45



Hypercontractive Region Evaluation Main Results on Hypercontractivity

Proof sketch for forward hypercontractive region

Case 1: λ2 ≥ 2

Mimic Janson’s proof technique for BSC [Janson 1997]: Denote λ′2 := λ2
λ2−1 , by

Hölder’s inequality, suffices to show that given (λ1 − 1)(λ2 − 1) ≥ 1− ε,

‖E(f(X)|Y )‖λ′2 ≤ ‖f(X)‖λ1

W.l.o.g let f(0) = 1− δ, f(1) = 1 + δ, compare the coefficients of Taylor
expansion around δ = 0 for both sides.

Works for binary input symmetric output channel with binary uniform inputs X
and Y is obtained via a symmetric channel WY |X .

WY |X(Y = i|X = 1) = WY |X(Y = −i|X = −1) = pi, ∀ −K ≤ i ≤ K,K ∈ N+
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Proof sketch for forward hypercontractive region

Case 2: 1 < λ2 < 2, denote the joint distribution of binary erasure channel with
uniform input as pBEC(ε)

XY .

Needs to show when (λ1 − 1)(λ2 − 1) = 1− ε,

max
qXY�p

BEC(ε)
XY

1
λ1
D(qX ||pBEC(ε)

X ) + 1
λ2
D(qX ||pBEC(ε)

Y )−D(qXY ||pBEC(ε)
XY )

=
{

0 if ε− 1
2 ≤

3
2(λ2 − 1)

> 0 otherwise

Non-convex optimization problem: Maximum happens in the interior.
Trivial stationary point qXY = p

BEC(ε)
XY .

Proof idea: the stationary points of this 3-variable function are restricted on a
1-parameter path.
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Proof sketch for forward hypercontractive region

Case 2: 1 < λ2 < 2, set 1− δ = 2q0E
q0E+q1E

, from the first order conditions, any (strictly)
interior stationary points can be parameterized in

qXY = [q00, q0E , q1E , q11]

=
[

(1− δ)λ′2(1− ε)
A

,
ε(1− δ)

A
,
ε(1 + δ)

A
,
(1− ε)(1 + δ)λ′2

A

]

where A = 2ε+ (1− ε)[(1 + δ)λ′2 + (1− δ)λ′2 ] is the normalizing constant and δ
satisfies that

(1− ε)(1− δ)
ε

λ2−1 + ε(1− δ)
ε−1
λ2−1 = (1− ε)(1 + δ)

ε
λ2−1 + ε(1 + δ)

ε−1
λ2−1 .

When (ε− 1
2) ≤ 3

2(λ2 − 1) and λ2 ∈ (1, 2), this equation has only one root at
δ = 0, implying only one stationary point qXY = p

BEC(ε)
XY ;

When (ε− 1
2) > 3

2(λ2 − 1), Taylor series expansion around δ = 0 gives that

1
λ1
D(qX‖pBEC(ε)

X ) + 1
λ2
D(qY ‖pBEC(ε)

Y )−D(qXY ‖pBEC(ε)
XY ) > 0
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X ) + 1
λ2
D(qY ‖pBEC(ε)

Y )−D(qXY ‖pBEC(ε)
XY ) > 0
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Hypercontractive Region Evaluation Main Results on Hypercontractivity
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A
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ε(1− δ)

A
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A
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(1− ε)(1 + δ)λ′2

A

]

where A = 2ε+ (1− ε)[(1 + δ)λ′2 + (1− δ)λ′2 ] is the normalizing constant and δ
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Proof sketch for reverse hypercontractive region
When λ2 < 0, need to determine (λ1, λ2) such that

min
qX

max
rXY

1
λ1
D(qX ||pBEC(ε)

X ) + 1
λ2
D(qY ||pBEC(ε)

Y )−D(rXY ||pBEC(ε)
XY ) ≥ 0

Write qX(0) = x, rXY (0, 0) = r, rXY (1, 1) = s and denote above 3-variable function
as f(x, r, s). Define, for x ∈ [0, 1]

g(x) := max
r,s:r∈[0,x],s∈[0,1−x]

f(x, r, s).

Wish to determine (λ1, λ2) (with λ2 < 0) such that g(x) ≥ 0, ∀x ∈ [0, 1].

Easy direction: From above, we require g(0) ≥ 0. This implies that

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]

Non-trivial direction: we show that

g(x) is symmetric along x = 1
2 . (Easy - by symmetry of the (X,Y )-distribution)

g(x) is convex at x = 1
2 and g′

(
1
2

)
= 0, g

(
1
2

)
= 0. (Easy)

g(x) has only one stationary point, i.e., g′(x) = 0, between (0, 1
2). (Needs to use

the 1-parameter path)
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Hypercontractive Region Evaluation Main Results on Hypercontractivity

Related Open Questions

To conclude,
1 In our proofs, local analysis suffices to compute the hypercontractive region.
2 The critical behavior happens at the boundary for reverse hypercontractivity.

How to determine hypercontractive parameters for a general joint distribution?
In other words, does the functional

1
λ1
H(X) + 1

λ2
H(Y )−H(XY )− EpXY (dXY )

have nice geometric properties (or low dimensional reparametrizations) that
allow such local arguments to work?
If so, can we devise an algorithm to efficiently approximate the
hypercontractivity parameters?
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Lossless source coding with two helpers

Sender 0: f (n)
0

Sender 1: f (n)
1

Sender 2: f (n)
2

Receiver: g(n)Zn

Xn

Y n

Ẑn
M0 ∈ [1 : 2nR0 )

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Figure 5: Lossless source coding with two helpers

The optimal rate region is unknown for a general pXY Z .
Consider the projection R0 = 0:
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M2 ∈ [1 : 2nR2 )

Figure 5: Lossless source coding with two helpers

The optimal rate region is unknown for a general pXY Z .
Consider the projection R0 = 0:
Slepian-Wolf region [Slepian-Wolf 1973]
When pXY Z satisfies that Z = (X,Y ), the optimal rate region is given by
(achieved by random binning)

R1 ≥ H(X|Y )
R2 ≥ H(Y |X)

R1 +R2 ≥ H(XY )
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Sender 1: f (n)
1

Sender 2: f (n)
2

Receiver: g(n)Zn

Xn

Y n

Ẑn

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Figure 5: Lossless source coding with two helpers

The optimal rate region is unknown for a general pXY Z .
Consider the projection R0 = 0:
Körner-Marton region [Körner-Marton 1979]
When X,Y binary and pXY Z satisfies that Z = X ⊕ Y , a rate pair (R1, R2) is
achievable by random linear codes if

R1 ≥ H(Z)
R2 ≥ H(Z)

The optimal rate region for Z = X ⊕ Y is unknown for a general pXY . This is
referred to as Körner and Marton’s modulo two sum problem.
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Known results on the optimal rate region

Exercise 16.23 in [Csiszár-Körner 2011]1

When pXY satisfies that H(Z) ≥ min{H(X), H(Y )}, the optimal rate region for
Z = X ⊕ Y in GF (2) is given by Slepian-Wolf region:

R1 ≥H(X|Y ),
R2 ≥H(Y |X),

R1 +R2 ≥H(XY ).

Theorem 1 in [Körner-Marton 1979]
When pXY follows binary symmetric channel with uniform inputs, the optimal rate
region for Z = X ⊕ Y in GF (2) is given by Körner-Marton region:

R1 ≥H(Z),
R2 ≥H(Z).

This part: more distributions pXY are discovered for optimality of Slepian-Wolf
coding scheme and Körner-Marton coding scheme on weighted sum rate.

1I. Csiszár and J. Körner, Information theory: Coding theorems for discrete memoryless systems
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Achievable region and lower bound

Ahlswede-Han achievable region: [Ahlswede-Han 1973]
When Z = X ⊕ Y , a rate pair (R1, R2) is achievable via a combination of random
linear codes and random binning if

R1 ≥ I(U ;X|V ) +H(Z|UV )
R2 ≥ I(V ;Y |U) +H(Z|UV )

R1 +R2 ≥ I(UV ;XY ) + 2H(Z|UV )

for some U and V that satisfy the Markov chain U → X → Y → V .

Cut-set lower bound: [Körner-Marton 1979]
Any achievable rate pair (R1, R2) for the modulo sum problem must satisfy

R1 ≥ H(Z|Y ) = H(X|Y )
R2 ≥ H(Z|X) = H(Y |X)

R1 +R2 ≥ H(Z).
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Main result: A lower bound

A lower bound on modulo sum problem [Nair-Wang 2020]

Any achievable rate pair (R1, R2) for the modulo sum problem must satisfy the
following constraints for any λ ≥ 1:

R1 + λR2 ≥ H(XY ) + min
U→X→Y

λH(Z|U)−H(Y |U)

λR1 +R2 ≥ H(XY ) + min
V→Y→X

λH(Z|V )−H(X|V )

Remark: From [Nair 2013]

min
U→X→Y

λH(Z|U)−H(Y |U) = −CqX [H(Y )− λH(Z)]
∣∣
p(x),

where Cx[f ]
∣∣
x0

denotes the upper concave envelope of the function f(x) with respect
to x evaluated at x = x0.
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Proof sketch
For λ ≥ 1, any “good” sequence of codes will require that

n(R1 + λR2) + n(1 + λ)εn
≥ I(M1M2;XnY n) + (λ− 1)H(M2|M1) + (1 + λ)H(Zn|M1M2)
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Proof sketch
For λ ≥ 1, any “good” sequence of codes will require that

n(R1 + λR2) + n(1 + λ)εn
≥ I(M1M2;XnY n) + (λ− 1)H(M2|M1) + (1 + λ)H(Zn|M1M2)
= H(XnY n)−H(XnY nM1M2)

::::::::::::::
+ (λ− 1)H(M1M2)− (λ− 1)H(M1)

+ (1 + λ)H(ZnM1M2)− λH(M1M2)
(a)= H(XnY n) + λH(ZnM1M2) +H(ZnM1M2)−H(ZnY nM1M2)

::::::::::::::
−H(M1M2)

− (λ− 1)H(M1)
(b)= H(XnY n) + λH(ZnM1) + λH(M2|M1Z

n)−H(Y nM1M2)
:::::::::::

+ I(Zn;Y n|M1M2)

− (λ− 1)H(M1)
≥ nH(XY ) + λH(ZnM1)−H(Y nM1)

::::::::
− (λ− 1)H(M1)

= nH(XY ) + λH(Zn|M1)−H(Y n|M1)

Step (a) uses H(XnY nM1M2) = H(ZnXnY nM1M2) = H(ZnY nM1M2).

Step (b) uses I(Zn;Y n|M1M2) = H(ZnM1M2) +H(Y nM1M2)−H(M1M2)−
H(ZnY nM1M2).
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Sinlge-letterize the lower bound

Lemma 3.1: Körner-Marton identity (4.14) in [Körner-Marton 1977]
Let λ ≥ 1 and let (Xn, Y n) be i.i.d distributed according to p(x, y) where X,Y take
values in a finite field. Let Zn be obtained as Zi = Xi ⊕ Yi, i = 1, .., n, i.e. the
component-wise modulo sum on the field. Then for any λ ≥ 1 the following holds:

min
Û :Û→Xn→Y n

λH(Zn|Û)−H(Y n|Û)

= n

(
min

U :U→X→Y
λH(Z|U)−H(Y |U)

)
.

Evaluating the weighted sum rate lower bounds are non-convex optimization
problems:

R1 + λR2 ≥ H(XY ) + min
U→X→Y

λH(Z|U)−H(Y |U)

λR1 +R2 ≥ H(XY ) + min
V→Y→X

λH(Z|V )−H(X|V )

Next: When will this lower bound match Körner-Marton region or Slepian-Wolf
region in terms of weighted sum rates?
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Application to binary alphabets GF(2): Previous results

Notation: P (X = 0) = x, P (Y = 0|X = 0) = c, P (Y = 1|X = 1) = d.

Previous results: Optimal weighted sum rates R1 + λR2.
When (c− 1

2 )(d− 1
2 ) ≤ 0(⇔ H(Z) ≥ H(Y )),

0 0.25 0.5 0.75 1
0

0.5

1

P (X = 0) = x

λ
1+λ

R1+λR2≥H(X)+λH(Z|X)

Figure 6: When is Slepian-Wolf region optimal

When c = d,

0 0.25 0.5 0.75 1
0

0.5

1

P (X = 0) = x

λ
1+λ

R1+λR2≥(1+λ)H(Z)

Figure 7: When is Körner-Marton region
optimal

WANG Yannan Non-convex Functionals in IT June 2021 29 / 45



Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Application to binary alphabets GF(2): New Results

Notation: P (X = 0) = x, P (Y = 0|X = 0) = c, P (Y = 1|X = 1) = d.

Our work: When (c− 1
2)(d− 1

2) > 0(⇔ H(Z) < H(Y )),

Example 1: c = 0.9, d = 0.6

0 0.25 0.5 0.75 1
0.5

0.75

1

P (X = 0) = x

λ
1+λ

R1+λR2≥H(X)+λH(Z|X) R1+λR2≥(1+λ)H(Z)
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Notation: P (X = 0) = x, P (Y = 0|X = 0) = c, P (Y = 1|X = 1) = d.

Our work: When (c− 1
2)(d− 1

2) > 0(⇔ H(Z) < H(Y )),

Example 2: c = 0.7, d = 0.6

0 0.25 0.5 0.75 1
0.5
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1
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λ
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Lower Bounds on Distributed Source Coding Körner and Marton’s Modulo Two Sum Problem

Comparison of the bounds
In [Ahlswede-Han 1983], Ahlswede and Han chose the following pXY given by

pXY =
[
p00 p01
p10 p11

]
=
[
0.003920 0.019920
0.976080 0.000080

]

6 · 10−2 0.1 0.14 0.18

1.5

2

2.5

3

3.5

4
·10−2

(H(Z), H(Z))

(H(X), H(Y |X))

R1

R2

Ahlswede-Han Achievable region
Lower bound (Theorem 1)

Cutset lower bound
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Lower Bounds on Distributed Source Coding
Alternative Proofs to Quadratic Gaussian CEO Problem and

Distributed Source Coding Problem

Outline

1 Hypercontractive Region Evaluation
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Lower Bounds on Distributed Source Coding
Alternative Proofs to Quadratic Gaussian CEO Problem and

Distributed Source Coding Problem

Quadratic Gaussian CEO Problem

Encoder 1: f (n)
1

Encoder 2: f (n)
2

Decoder: g(n)Xn

Channel 1: W1

Channel 2: W2

Y n1

Y n2

(X̂n, D)

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

Figure 8: generalized CEO distributed source coding

Distortion criterion: lim supn→∞ E
(

1
n

∑n
i=1 d(Xi, X̂i)

)
≤ D.

Quadratic Gaussian CEO problem: d(Xi, X̂i) = (Xi − X̂i)2;
Y1 = X + Z1, Z1 ⊥ X,Z1 ∼ N(0, N1); Y2 = X + Z2, Z2 ⊥ X,Z2 ∼ N(0, N2).
Berger-Tung coding scheme [Berger 1978; Tung 1978; Prabhakaran-Tse-
Ramachandran 2004] is shown to be optimal by Oohama [Oohama 2005].
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Lower Bounds on Distributed Source Coding
Alternative Proofs to Quadratic Gaussian CEO Problem and

Distributed Source Coding Problem

Quadratic Gaussian CEO Problem

A lower bound to generalized CEO problem
Consider previous generalized CEO distributed source coding on X,Y1, Y2 satisfying that

Y1 → X → Y2 with the distortion criterion lim sup
n→∞

E

(
1
n

n∑
i=1

d(Xi, X̂i)

)
≤ D. For any λ ≥ 1, any

achievable triple (R1, R2, D) must satisfy that
R1 + λR2 ≥H(XY1) + λH(Y2|X) + (λ− 1) max

{
H(X|U1WQ)−H(X|X̂Q), 0

}
−H(X|X̂Q)−H(Y1|XU1WQ)− λH(Y2|XU2WQ)

R2 + λR1 ≥H(XY2) + λH(Y1|X) + (λ− 1) max
{
H(X|U2WQ)−H(X|X̂Q), 0

}
−H(X|X̂Q)−H(Y2|XU2WQ)− λH(Y1|XU1WQ)

subject to the constraints
U1 ← QWY1 ← QWX → QWY2 → U2

QW ⊥ XY1Y2

X̂ ← QWU1U2 → XY1Y2

E[d(X, X̂)] ≤ D.

Proof sketch: Wi = Xn/i, U1i = M1Y
i−1

1 , U2i = M2Y
i−1

2 . Q is the uniform distribution
over i = 1, · · · , n. This is in a similar spirit as the lower bound [Wagner-Anantharam
2008].
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Lower Bounds on Distributed Source Coding
Alternative Proofs to Quadratic Gaussian CEO Problem and

Distributed Source Coding Problem

Quadratic Gaussian CEO Problem

A lower bound to generalized CEO problem
Consider previous generalized CEO distributed source coding on X,Y1, Y2 satisfying that

Y1 → X → Y2 with the distortion criterion lim sup
n→∞

E

(
1
n

n∑
i=1

d(Xi, X̂i)

)
≤ D. For any λ ≥ 1, any
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X̂ ← QWU1U2 → XY1Y2

E[d(X, X̂)] ≤ D.

Rotation techniques in [Geng-Nair 2014] can show that Gaussian U1, U2 and constant
Q,W minimizes above weighted sum rate lower bound.
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Lower Bounds on Distributed Source Coding
Alternative Proofs to Quadratic Gaussian CEO Problem and

Distributed Source Coding Problem

Quadratic Gaussian Distributed Source Coding

Xn

Channel 1: W1

Channel 2: W2

Y n1

Y n2

Encoder 1: f (n)
1

Encoder 2: f (n)
2

Decoder: g(n)Xn

M1 ∈ [1 : 2nR1 )

M2 ∈ [1 : 2nR2 )

(Ŷ n
1 , D1)

(Ŷ n
2 , D2)

Figure 9: Generalized Distributed Source Coding with auxiliary source structure

lim supn→∞ E
(

1
n

∑n
i=1 d(Y1i, Ŷ1i)

)
≤ D1, lim supn→∞ E

(
1
n

∑n
i=1 d(Y2i, Ŷ2i)

)
≤ D2.

Quadratic Gaussian distributed source coding problem: d(Xi, X̂i) = (Xi − X̂i)2,

(Y1, Y2) ∼ N
(
~0,
[
1 ρ
ρ 1

])
.

Berger-Tung coding scheme [Berger 1978; Tung 1978; Prabhakaran-Tse-
Ramachandran 2004] is shown to be optimal by [Wagner-Tavildar-Viswanath
2008].
Assume there exists some auxiliary source X such that Y1 ← X → Y2.
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Lower Bounds on Distributed Source Coding
Alternative Proofs to Quadratic Gaussian CEO Problem and

Distributed Source Coding Problem

Quadratic Gaussian Distributed Source Coding

A lower bound to generalized distributed source coding
Consider the generalized quadratic distributed source coding on 2-DMS (Y1, Y2) with the distortion
criterion lim supn→∞ E

(
1
n

∑n

i=1 d(Y1i, Ŷ1i)
)
≤ D1 and lim supn→∞ E

(
1
n

∑n

i=1 d(Y2i, Ŷ2i)
)
≤ D2.

Assume there exists some auxiliary source X such that Y1 and Y2 are obtained by passing X through
some discrete memoryless channel W1 and W2 respectively. For any λ ≥ 1, any achievable triple
(R1, R2, D1, D2) must satisfy that

R1 + λR2 ≥H(XY1) + λH(Y2|X)−H(X|Ŷ1Ŷ2Q)−H(Y1|XU1QW )

+ (λ− 1) max
{
H(X|U1QW )−H(X|Ŷ1Ŷ2Q), 0

}
− λH(Y2|XU2QW )

R2 + λR1 ≥H(XY2) + λH(Y1|X)−H(X|Ŷ1Ŷ2Q)−H(Y2|XU2QW )

+ (λ− 1) max
{
H(X|U2QW )−H(X|Ŷ1Ŷ2Q), 0

}
− λH(Y1|XU1QW )

subject to the constraint
U1 ← QWY1 ← QWX → QWY2 → U2

QW ⊥ XY1Y2

Ŷ1Ŷ2 ← QWU1U2 → XY1Y2

E[d(Y1, Ŷ1)] ≤ D1,E[d(Y2, Ŷ2)] ≤ D2.

This is also in a similar spirit as the lower bound [Wagner-Anantharam 2008].
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Log-Convexity of Fisher Information Motivations

Motivation 1: Non-convex optimization problem

A non-convex optimization problem
Let WY |X denote a channel that maps input random variable X with distribution µX
into the output random variable Y with distribution µY . Consider the non-convex
optimization problem, that is, computing the maximum over µX of

Fλ(µX) := λH(X)−H(Y )

where 0 ≤ λ ≤ 1 is some fixed constant.

Mrs Gerber’s Lemma [Wyner-Ziv 1973]
When the channel WY |X is the binary symmetric channel with flipping probability p,
under the reparametrization of µX , defined by µX(u) = H−1

2 (u),

Fλ(u) = λu−H2(p ∗H−1
2 (u)).

is concave in u for any λ. Here a ∗ b := a(1− b) + (1− a)b.

Question: Is there an analogous result in the additive Gaussian noise channel setting,
that is, Y = X +W where W ∼ N(0, σ2)?
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Log-Convexity of Fisher Information Motivations

Motivation 1: Non-convex optimization problem

In the continuous world, to make moving direction limited in one dimension, we
assume that

Xt :=X +
√
tZ, t > 0, Z ∼ N(0, 1)

Yt :=Xt +W,W ∼ N(0, σ2)

µXt : the probability density function of X +
√
tZ. µXt satisfies the heat flow

equation: ∂µXt
∂t = 1

2
∂2µXt
∂x2 with initial condtion µX0 (x) ≡ f(x), where f(x) is the

probability density function of X.
The differential entropy h(X) := −

∫
R f(x) ln f(x)dx.

Want a parametrization t = φ(u) such that h(X +
√
φ(u)Z) is linear in u and

the output entropy, h(µY ) = h(X +
√
φ(u)Z +W ) is convex in u.

A bit of algebra immediately shows that this question is equivalent to asking
whether the Fisher information

I(µXt ) :=
∫
R

(
∂

∂x
µXt (x)

)2
µXt (x)dx

is log-convex in t, for all random variables X.
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Log-Convexity of Fisher Information Motivations

Motivation 2: Completely monontone and log-convexity

Let X be a random variable with a finite variance P . Let g(0)
X (t) := h(µXt ),

g
(k)
X (t) := ∂k

∂tk
h(µXt ). De Bruijin’s identity tells that

I(µXt ) = 2 ∂
∂t
h(µXt ) = 2g(1)

X (t)

Let Z ∼ N(0, P ). In Section 12 of [McKean 1966], McKean observes that for any
t ≥ 0, g(0)

Z (t) ≥ g(0)
X (t) ≥ 0, g(1)

Z (t) ≤ g(1)
X (t) ≤ 0, and g

(2)
Z (t) ≥ g(2)

X (t) ≥ 0.
Therefore he conjectured that

Mckean’s conjecture [McKean 1966]

∀X,∀t ≥ 0, (−1)kg(k)
Z (t) ≥ (−1)kg(k)

X (t) ≥ 0, ∀k ≥ 3.

In [Cheng-Geng 2015], g(3)
X (t) ≥ 0, and g

(4)
X (t) ≤ 0 for any t ≥ 0 are established.

They made a weaker conjecutre that (−1)kg(k)
X (t) ≥ 0. In other words,

I(µXt ) = 2g(1)
X (t) is a completely monotone function of t, for all X.
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Log-Convexity of Fisher Information Motivations

Motivation 2: Completely monontone and log-convexity

An alternate characterization of completely monotone function:

Bernstein’s theorem

Let g(t) : [0,∞)→ [0,∞) be a continuous and infinitely differentiable function. The
following are equivalent:

g is completely monotone: ∀n ∈ N, ∀t > 0, (−1)ng(n)(t) ≥ 0;
g is the Laplace transform of a finite Borel measure ν in R+:

∀x ∈ R+, g(x) =
∫ ∞

0
e−xtdν(t).

Via this theorem, one can show that any completely monotone function g(t) is
log-convex with respect to t, see [Fink 1982].
If I(µXt ) is a completely monotone function with respect to t, then ln I(µXt ) is
convex with respect to t.

This part: We established that I(µXt ) is log-convex in t, thus resolving affirmatively
Conjecture 2 in [Cheng-Geng 2015].
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Log-Convexity of Fisher Information Proof to log-convexity of Fisher information

Notations and Previous Results
Proof techniques:

The ideas and techiniques starts from a short proof to the ”concavity of entropy
power” (Costa’s EPI) by C. Villani [Villani-2000], which is in turn motivated by
calculations of Bakry and Emery [Bakry-Emery 1985].
Later, [Cheng-Geng 2015] and [Zhang-Anantharam-Geng 2018] followed the work
and developed these tools and notations.

Notations:
v(x) := lnµXt (x), t > 0, and vk(x) := ∂k lnµXt (x)

∂xk
, k ∈ Z+,

〈ϕ〉 :=
∫
R ϕµ

X
t (x)dx

Key idea: Under these notations, our problems can be rewritten as inequalities in
terms of 〈

∏r
i=1 v

mi
ki
〉, where r,mi, ki ∈ Z+.

Integration by parts formula, Lemma 3 in [Zhang-Anantharam-Geng 2018]
For k ≥ 2, let ϕ(x) be any “reasonably smooth” function.

〈ϕvk + ϕv1vk−1 + ∂ϕ

∂x
vk−1〉 = 0.

ϕ could be chosen in the form of
∏r
i=1 v

mi
ki

(x).
This gives the linear dependence relationships among the terms 〈

∏r
i=1 v

mi
ki
〉.
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Log-Convexity of Fisher Information Proof to log-convexity of Fisher information

Villani’s proof to Costa’s EPI

Fisher information and its derivatives
For t > 0, Fisher information I(µXt ) and its derivatives up to second order are:

I(µXt ) = 〈v2
1〉,

d

dt
I(µXt ) = −〈v2

2〉,

d2

dt2
I(µXt ) = 〈v2

3 + 2v2
1v

2
2 + 4v1v2v3〉.

Costa’s EPI in scalar case, [Costa 1985]

For any random variable X and Z ⊥ X,Z ∼ N(0, 1), e2h(X+
√
tZ) is concave in t ≥ 0.

Proof [Villani-2000]:

Computing second derivative of e2h(X+
√
tZ) with respect to t yields:

e2h(X+
√
tZ)
[
−〈v2

2〉+ 〈v2
1〉2
]
≤ 0

〈v2+v2
1〉=0

⇐⇒ −〈v2
2〉+ 〈v2〉2 ≤ 0
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Log-Convexity of Fisher Information Proof to log-convexity of Fisher information

Main result

Log-convexity of Fisher information in scalar case [Ledoux-Nair-Wang 2020]
Let X be a random variable on some probability space (Ω,A,P) with values in R,
and Z ⊥ X,Z ∼ N(0, 1). Consider Xt := X +

√
tZ, t > 0, with probability density

function µXt (x) with respect to the Lebesgue measure on R. The Fisher information
of Xt is log-convex in t, i.e.

ln I(µXt ) = ln
∫
R

(
∂

∂t
lnµXt (x)

)2
µXt (x)dx

is convex in t.

Proof sketch: Log-convexity of Fisher information is equivalent to(
d

dt
I(µXt )

)2
≤ I(µXt ) d

2

dt2
I(µXt ).

In terms of 〈
∏r
i=1 v

mi
ki
〉, it is equivalent to showing

〈v2
2〉2 ≤ 〈v2

1〉〈v2
3 + 2v2

1v
2
2 + 4v1v2v3〉.
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Log-Convexity of Fisher Information Proof to log-convexity of Fisher information

Proof continued:
In integration by parts formula, choosing k = 2, ϕ = v2 and k = 2, ϕ = v2

1 will lead to:{
〈v2

2〉 = −〈v2
1v2 + v1v3〉

〈v2
1v2〉 = −1

3〈v
4
1〉.

⇒〈v2
2〉 = −〈v1v3 + αv2

1v2 −
1− α

3 v4
1〉,∀α ∈ R

⇒〈v2
2〉 = −〈v1(v3 + αv1v2 −

1− α
3 v3

1)〉, ∀α ∈ R

Cauchy-Schwartz=⇒ 〈v2
2〉2 ≤ 〈v2

1〉〈(v3 + αv1v2 −
1− α

3 v3
1)2〉,∀α ∈ R.

To show

〈v2
2〉2 ≤ 〈v2

1〉〈v2
3 + 2v2

1v
2
2 + 4v1v2v3〉.

Suffices to show that

〈(v3 + αv1v2 −
1− α

3 v3
1)2〉 ≤ 〈v2

3 + 2v2
1v

2
2 + 4v1v2v3〉

holds for some α ∈ R.
We prove it for α = 2 by integration by parts formula and some calculation.
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Log-Convexity of Fisher Information Proof to log-convexity of Fisher information

Open: Generalization of log-convexity to higher dimensions

One clear question that is definitely worth addressing is to determine whether
the log-convexity of Fisher information along the heat flow also holds for random
vectors.

In particular we ask, whether(
d3h(Xn +

√
tZn)

dt3

)(
dh(Xn +

√
tZn)

dt

)
≥
(
d2h(Xn +

√
tZn)

dt2

)2

where Xn and Zn(∼ N (0, In)) are independent random vectors taking values in
Rn.

If Xn has independent components, then an application of the Cauchy-Schwartz
inequality immediately implies affirmatively the inequality above.
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Log-Convexity of Fisher Information Proof to log-convexity of Fisher information

Summary: Take-aways

In this talk, we studied several non-convex optimization problems:

Hypercontractive region evaluation for the binary erasure channel

Distributed source coding
Modulo sum problem: Obtained improved lower bounds
Gaussian setting: Alternate proofs of optimality

Log-convexity of Fisher information: Resolved the log-convexity of Fisher
Information conjecture.

Thank you! Any questions are welcome!
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Supplementary slides to Introduction: Channel coding

M ∈ [1 : 2nR] sender: f (n) DMC: WY |X receiver: g(n) M̂ ∈ [1 : 2nR]
Xn Y n

Figure 10: Point-to-point communication channel model

Theorem (Shannon 1948)

The capacity of a DMC WY |X is given by

C (WY |X) = {R ≥ 0 : R ≤ max
pX

I(X;Y )}. (2)
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Figure 10: Point-to-point communication channel model

{R ≥ 0 : R < maxpX I(X;Y )} is an achievable rate region for DMC WY |X ;

Optimality: Suffices to show for any DMC WY |X and its product W⊗2
Y |X

max
pX1X2

I(X1X2;Y1Y2) = 2 max
pX

I(X;Y )

It belongs to the non-convex functional family: Let c > 0,

max
pX

I(X;Y ) = lim
c→∞

max
pXY

I(X;Y )− c
∑
x∈X

pX(x)D(pY |X=x||WY |X=x)
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Supplementary slides to Hypercontractivity: g(x) has only one
stationary point between (0, 1

2)

Recall g(x) := maxr,s:r∈[0,x],s∈[0,1−x] f(x, r, s).
Hence any stationary point of g(x) will be a stationary point of f(x, r, s).

Let y = 2(x−r)
1−r−s ; we know from forward hypercontractivity proof

the stationary points of f(x, r, s) are in 1-1 correspondence with the roots of

1− ε
ε

yλ
′
2−λ1 + y1−λ1 = 1− ε

ε
(2− y)λ′2−λ1 + (2− y)1−λ1 .

Hence suffices to show that there is exactly one root of above equation for
y ∈ (0, 1).
This can be shown by taylor expansion and a key observation on the sign change
patterns of the coefficients.
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Supplementary slides to modulo sum problem: Single-letterize the
lower bound on

Lemma 3.1
Let λ ≥ 1 and let (Xn, Y n) be i.i.d distributed according to p(x, y) where X,Y take
values in a finite field. Let Zn be obtained as Zi = Xi ⊕ Yi, i = 1, .., n, i.e. the
component-wise modulo sum on the field. Then for any λ ≥ 1 the following holds:

min
Û :Û→Xn→Y n

λH(Zn|Û)−H(Y n|Û)

= n

(
min

U :U→X→Y
λH(Z|U)−H(Y |U)

)
.

Proof sketch
Taking i.i.d. copies of the minimizer of the right hand side, left hand side is at
most the value of right hand side.
The other direction follows from Markov chain (Û , Y n

i+1, Z
i−1)→ Xi → (Yi, Zi)

and Körner-Marton identity.
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Supplementary slides to modulo sum problem: Conditions for
lower bound to be tight

Lemma 3.2
The lower bound for the weighted sum-rate R1 + λR2, for λ ≥ 1 given in Theorem 1
is optimal, i.e. matches the weighted sum-rate of the optimal rate region, if either of
the following conditions hold:

(i) Cµ(x)[H(Y )− λH(Z)]
∣∣
p(x) = H(Y )− λH(Z) and Y is independent of Z,

(ii) Cµ(x)[H(Y )− λH(Z)]
∣∣
p(x) = H(Y |X)− λH(Z|X).

Further if condition (i) holds for some λ1 > 1, then it will also hold for 1 ≤ λ ≤ λ1;
and if condition (ii) holds for some λ2 ≥ 1, then it will also hold for λ ≥ λ2.

Remark:
A relatively easier condition to verify is the convexity of H(Y )− λH(Z) with respect
to the distribution of X.
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Supplementary slides to Körner-Marton Problem: Application to
binary alphabets GF(2)
Notation: We will parameterize the space of distributions over pairs of binary
alphabets, p(x, y) as follows:
P (X = 0) = x, P (Y = 0|X = 0) = c, P (Y = 1|X = 1) = d.

Proposition 3.1: Optimality of Slepian-Wolf region
The optimal weighted sum-rate of the capacity region is given by the Slepian Wolf
region if any of the following conditions hold:

(i) For any λ, if (c− 1
2)(d− 1

2) ≤ 0, or

(ii) λ ≥
(
c−d̄
c−d

)2
, c 6= d, and (c− 1

2)(d− 1
2) > 0.

where d̄ = 1− d.

Remarks:
(i) The condition (i) above is already known and stated as exercise 16.23 page 390

of Csiszár and Körner’s book. One can verify that that H(Z) ≥ H(Y ) is
equivalent to (c− 1

2)(d− 1
2) ≤ 0.

(ii) Note that an equivalent proposition can also be stated for the alternate
parameterization: P (Y = 0) = y, P (X = 0|Y = 0) = ĉ, P (X = 1|Y = 1) = d̂.
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Supplementary slides to modulo sum problem: Application to
binary alphabets GF(2)

Proposition 3.2: Optimality of Körner-Marton region

Let P (X = 0) = x, P (Y = 0|X = 0) = c, P (Y = 1|X = 1) = d where x =
√
dd̄√

dd̄+
√
cc̄
.

The optimal weighted sum-rate of the capacity region is given by the Körner-Marton
region, i.e. using linear codes, if any of the following conditions hold:

(i) For any λ, if c = d, or
(ii) 1 ≤ λ ≤ λ1, c 6= d, and (c− 1

2)(d− 1
2) > 0, where λ1 is the larger root of the

quadratic equation

λ2(c− d)2 + λ
(
2(c− d)(c− d̄)− 4dd̄(c− c̄)2)+ (c− d̄)2 = 0.

where d̄ = 1− d, c̄ = 1− c.

Remarks:
(i) As long as (c− 1

2)(d− 1
2) > 0 and x =

√
dd̄√

dd̄+
√
cc̄

, the optimal sum-rate will be
given by the Körner-Marton region, i.e. using linear codes.

(ii) An equivalent Proposition can also be stated for the alternate parameterization:
P (Y = 0) = y, P (X = 0|Y = 0) = ĉ, P (X = 1|Y = 1) = d̂.
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Supplementary slides to modulo sum problem: to higher alphabet
fields

Example 1
For GF (3), one instance of p(x, y) satisfying that Z is independent of Y and
Cµ(x)[H(Y )−H(Z)]

∣∣
p(x) = H(Y )−H(Z) is given by the following distribution:

p(x, y) =

0.08 0.06 0.18
0.08 0.18 0.06
0.24 0.06 0.06



Example 2
One instance of p(x, y) satisfying Cµ(x)[H(Y )−H(Z)]

∣∣
p(x) = H(Y |X)−H(Z|X) is

given by the following distribution:

p(x, y) =

0.02 0.02 0.48
0.02 0.06 0.16
0.06 0.02 0.16
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Supplementary slides to Log-convexity of Fisher Information:
Proof for α = 2
Expanding what we want to show yields

〈(2− α2)v2
1v

2
2 + (4− 2α)v1v2v3 −

1
9(1− α)2v6

1 + 2
3(1− α)v3

1v3 + 2
3α(1− α)v4

1v2〉 ≥ 0.

In integration by parts formula, choosing k = 3, ϕ = v3
1 and that k = 2, ϕ = v4

1 gives

〈v3
1v3 + v2v

4
1 + 3v2

1v
2
2〉 = 0

〈v6
1 + 5v4

1v2〉 = 0.

Proving above inequality for some α ∈ R is equivalent to proving the following
inequality

〈(2− α2)v2
1v

2
2 + (4− 2α)v1v2v3 −

1
9(1− α)2v6

1 + 2
3(1− α)v3

1v3 + 2
3α(1− α)v4

1v2〉

+β〈v3
1v3 + v2v

4
1 + 3v2

1v
2
2〉+ γ〈v6

1 + 5v4
1v2〉 ≥ 0

for some α, β, γ ∈ R.
We successively choose α = 2, β = 2

3 , and γ = 2
15 . Above reduces to 1

45〈v
6
1〉 ≥ 0.
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Supplementary slides to Log-convexity of fisher information Open
Problem: Generalization of convexity of the output entropy

Consider a channel given by

Y m = AXn + Zm,

where A is an m× n (channel-gain) matrix, Xn is the input, and
Zm(∼ N(0, Im)) is the additive Gaussian noise.
What are the flows in the space of input distributions, say characterized by Xn

t ,
where h(Xn

t ) is linear in t and h(Y m
t ) is convex in t?

An interesting such flow exists in the space of Gaussian vectors [Kubo-Andô
1980]. Let Xn

0 ∼ N(0,K0) and Xn
1 ∼ N(0,K1). Define

Kt = K
1
2
0

(
K
− 1

2
0 K1K

− 1
2

0

)t
K

1
2
0 ,

and Xn
t ∼ N(0,Kt). Then h(Xn

t ) is linear in t and h(Y m
t ) = log |AKtA

T + I| is
convex in t.
Question: Does similar flows exist in a more general setting, i.e. outside the
space of Gaussian vectors and more generally for larger class of channels?

.
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