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Introduction

A non-convex functional family of interest

Given a vector of discrete random variables X" := (Xy, -+, X,,) taking values in
®iq X and dx» : @7 &; — R some arbitrary vector:

G(dxn) := max Z asH(Xg) — Ep . (dxn) |,
PX™\ s im]

where S is a subset of [1: n], Xg denotes the set {X; : i € S}, and ag € R depends
on S.
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where S is a subset of [1: n], Xg denotes the set {X; : i € S}, and ag € R depends
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Introduction

A non-convex functional family of interest

Given a vector of discrete random variables X™ := (X1, ---, X,,) taking values in
@& and dx» @ ®), X; — R some arbitrary vector:

G(dxn) == max Z asH(Xg) — Ep . (dxn) |,
Sc[1:n]

where S is a subset of [1: n], Xg denotes the set {X; :i € S}, and ag € R depends
on S. The non-convexity arises since aeg can be positive or negative.

Why is this functional family interesting?

@ The evaluation of certain achievable rate regions or bounds to the capacity
region canonically involves functionals of the above form.

o If the global optimizers of a natural “product”-extension of a functional
(corresponding to an achievable rate region) are product distributions, then the
achievable rate regions can be shown to be optimal in many settings. @

E;&;-‘fhi“s;,
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Lossless source coding with one helper

M 1:
Sender 1: fl(") L€l

Y| M€ [1:2nf2)

2nR1)

Yn

Receiver: g™

X™ —— Sender 2: fz(n
Figure 1: Lossless source coding with one helper

What is the optimal rate region Z(pxy)?

WANG Yannan Non-convex Functionals in IT




Lossless source coding with one helper

M 1:2nfa .
yn Sender 1: fln) = ) Receiver: g™ yn
My € [1:2nk2

xn Sender 2: an) 2€l )

Figure 1: Lossless source coding with one helper

What is the optimal rate region Z(pxy)?

Theorem 1.1, [Ahlswede-Koérner 1975; Wyner 1975]

Let (X,Y) ~ pxy be a discrete memoryless source. The optimal rate region Z(pxy)
for loseless source coding of Y with a helper observing X is the set of rate pairs
(R1, R2) such that

Ry >I1(U; X)

for some conditional pmf py|x, where [U| < |X]+ 1.

v
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Lossless source coding with one helper

M 1:2nfa .
yn Sender 1: fln) = ) Receiver: g™ yn
My € [1:2nk2

xn Sender 2: an) 2€l )

Figure 1: Lossless source coding with one helper

What is the optimal rate region Z(pxy)?
The optimal rate region is always convex by time-sharing argument.

Evaluation of the region: using weighted sum rates (supporting hyperplanes)

' Ry +7R H(Y|U) +~I(U; X
(Rl,Rz)H;ICI}}ievable 1+ 7k = mln ( | )+7 ( )

:vH(X) +;};g[ (Y[U) = vH(X|U)]

=yH(X) ~ € [7H(X) — H(Y)] (px)

Non-trivial regime: v € (0,1). It becomes a non-convex optimization problem.
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|
Upper Concave Envelope and Duality (Fenchel)
Define f(gx) :=vH(X)— H(Y).
Upper Concave Envelope and Lower Convex Envelope (Example on next slide)

Cox[f] - =inf{g: g is concave w.r.t. ¢x and g(gx) > f(g¢x),Vax}
R’]X [f] L= _Q:QX[_f]

Fenchel’s Dual Representation

Given dx = (d,xz € X) a real-valued vector of length |X|, the Fenchel-dual of the
function, f(qx), is

fidx) =sup {H(X) = H(Y) ~ Eqx (dx)}

The dual variables d, define hyperplanes, and ff(dx) is convex in dx.

9
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|
Upper Concave Envelope and Duality (Fenchel)
Define f(gx) :=vH(X)— H(Y).
Upper Concave Envelope and Lower Convex Envelope (Example on next slide)

Cox[f] - =inf{g: g is concave w.r.t. ¢x and g(gx) > f(gx),Vqx}
R(]X [f] L= _Q:QX[_f]

Fenchel’s Dual Representation

Given dx = (d,z € X) a real-valued vector of length |X|, the Fenchel-dual of the
function, f(qx), is

fdx) =sup {yH(X) — H(Y) — Eqy (dx)}

Coxl1(px) =inf {f* (dx)+ > dsz<a:>}

zeX

@ The dual of the dual yields the upper concave envelope.

o Computing the dual of fT(dx) is a convex-optimization problem. Therefore, the
main difficulty lies in computing the dual function, fT(dx).

v
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|
Plot of Upper Concave Envelope

Simple Observation: Suffices to determine the extremal distributions, that is, the set
of px satisfying €, [f](px) = f(px).

Example: Consider P(X =0) =2,P(X =1)=1—z.

f(x)=03H(X)— H(Y)=0.3Hy(z) — H2(0.8x + 0.2(1 — z)).

y=~ HX)-H(Y), v=0.3, WV|X BSC fliping probability=0.8
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@ Hypercontractive Region Evaluation
@ Introduction to Hypercontractivity
@ Main Results on Hypercontractivity

© Lower Bounds on Distributed Source Coding
o Korner and Marton’s Modulo Two Sum Problem
e Alternative Proofs to Quadratic Gaussian CEO Problem and Distributed Source

Coding Problem

© Log-Convexity of Fisher Information
o Motivations
@ Proof to log-convexity of Fisher information

e
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Outline

@ Hypercontractive Region Evaluation
@ Introduction to Hypercontractivity
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Hypercontractive Region Evaluation

Definitions of Hypercontractivity

Hypercontractive Region Evaluation

Norm

1Z]|a := E(|Z|)‘)%, A#0, (normalized X moment); ||Z||o := eP1o812D

Forward hypercontractivity

A pair of random variables (X,Y") is said to be (A1, \2) forward hypercontractive, for
AL, A2 € (1,00), if

E(f(X)g(Y)) <[IFX)xllg(¥Y)]]x,

holds for all non-negative functions f(-), g(-).
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Definitions of Hypercontractivity

Hypercontractive Region Evaluation

Norm

| Z]|x := E(|Z|)‘)§, A#0, (normalized X moment); ||Z||o := eP1o812D

Forward hypercontractivity

A pair of random variables (X,Y") is said to be (A1, \2) forward hypercontractive, for
AL e € (1, 00), if

E(f(X)g(Y)) <[IFX)xllg(¥Y)]]x,

holds for all non-negative functions f(-), g(-).

Reverse hypercontractivity

A pair of random variables (X,Y) is said to be (A1, A2) reverse hypercontractive, for
AL, Ao € (—OO, 1), if

E(f(X)g(Y)) = |IF(X)xllg(Y ),

holds for all positive functions f(-), g(-).

v
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Known hypercontractivity parameters

Binary Symmetric Channel (BSC) with uniform input: [Bonami 1970; Borell 1982]

Consider a uniformly distributed binary valued X and Y obtained by passing X
through a BSC with crossover probability %. (X,Y) is (A1, A2) forward (reverse)
hypercontractive if and only if

()\1 — 1)()\2 — 1) Z p2

Gaussian: [Gross 1975, Borell 1982]

Let (X,Y)~ N (0, L}) ﬂ), (X,Y) is (A1, A2) forward (reverse) hypercontractive if

and only if

()\1 — 1)()\2 — 1) Z p2

These hypercontractive parameters have found applications in theoretical computer
science, see [Kahn-Kalai-Linial 1988; Mossel-O’Donnell-Rubinfeld-Servedio 2006].

9
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Known hypercontractivity parameters

Binary Symmetric Channel (BSC) with uniform input: [Bonami 1970; Borell 1982]

Consider a uniformly distributed binary valued X and Y obtained by passing X
through a BSC with crossover probability %. (X,Y) is (A1, A2) forward (reverse)
hypercontractive if and only if

M —1)(Ae—1) > p?

Gaussian: [Gross 1975, Borell 1982]

Let (X,Y)~ N (0, [2 'ﬂ ), (X,Y) is (A1, A2) forward (reverse) hypercontractive if

and only if

M =1 —1)>p°

These hypercontractive parameters have found applications in theoretical computer
science, see [Kahn-Kalai-Linial 1988; Mossel-O’Donnell-Rubinfeld-Servedio 2006].

A natural question (thanks: V. Guruswami and J. Radhakrishnan): What is the

hypercontractive region for binary erasure channel with uniform inputs? S
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Equivalent characterizations of forward hypercontractivity

Hypercontractive Region Evaluation

Equivalent characterizations of hypercontractivity [Nair 2014]

Let (X,Y) ~ pxy. The following assertions are equivalent:
@ For all non-negative functions f(-), g(-),

E(f(X)g(Y)) < |[F(XMxllg(Y)x,

@ For every ¢xy (< pxy) we have (also appeared in [Carlen-Cordero-Erausquin
2009))

€

1
~— D(gx|lpx) + e

N D(gv|lpy) < D(gxv|lpxvy)

@ For every extension pyxy such that I(U; XY') > 0 we have

Lrwix)+ Liws vy < 1w xv)
M S

@ Let R[f], represents the lower convex envelope of the function f evaluated at x.

8 [}\%H(X) n )\%H(Y) - H(XY)} ~ Yuxy+ L) - HXY)

A1 A2

PXY

v
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Equivalent characterizations of reverse hypercontractivity
[Beigi-Nair 2016]

Hypercontractive Region Evaluation

Denote the reverse hypercontractive region of (A1, A2) for a pair of random variables
(X,Y) distributed according to pxy as R"(X,Y).

Equivalent characterizations of reverse hypercontractivity
@ The pair (A1, A2) with 0 < A\; < 1,0 < Ay < 1 belongs to R"(X,Y) if and only if
for any ¢x and gy there exists rxy with rx = ¢x and ry = ¢y such that:

1 1
XD(QXHPX) + )\*QD((JYHPY) > D(rxvllpxy)

@ The pair (A1, A2) with 0 < A; < 1, A2 < 0 belongs to R"(X,Y) if and only if for
any qx there exists rxy with rx = gx such that:

1
—D(ry|lpy) = D(rxv|lpxy)

1
~—D(gx|lpx) + "

A1

@ The pair (A, A2) with A} < 0,0 < Ay < 1 belongs to to R"(X,Y) if and only if
for any qy there exists rxy with ry = gy such that:

1

A2

1
+Drxllpx) +
A1

D(gy|lpy) = D(rxvllpxy)

v
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Evaluation of (Reverse) Hypercontractivity Parameters

Hypercontractive Region Evaluation

Information Theory

e Related to determining extremal distributions in multiuser information theory

9
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Gray-Wyner Source Coding

Hypercontractive Region Evaluation

My € [1:2nf N
Sender 1: fln) el ) Receiver 1: ggn) — X"

My € [1: 2nFo)

Xy Sender 0: fon)

My € [1: 2712 R
Sender 2: f2") 2€l ) Receiver 2: gén) YY"

Figure 2: Gray-Wyner Source Coding Setting
Theorem 2.1 [Gray-Wyner 1974]
The optimal rate region Z(pxy) is the set of rate triplets (Ry, R1, R2) such that

Ry >I(X,Y;V),

Ry >H(X|V), (1)
Ry >H(Y|V)

for some conditional pmf py|yy with [V| < |X[|V] + 2.

v

9
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Gray-Wyner Source Coding Setting

Hypercontractive Region Evaluation

Evaluation of the region: using (71, v2) weighted sum rates

min Ry + 1 R1 + 7 Rs
= min I(XY; V) + 71H(X|V) + ’YQH(Y‘V)
=H(XY) + 8[nH(X)+HY) - HXY)]

PXxy

Observations [Beigi-Gohari 2015]:
@ Tensorization of forward hypercontractivity < Optimality of single letter

expression of Gray-Wyner System

1 1

s 72) forward hypercontractive} = the set of extremal

o {pxvy :pxy is (

distributions pxy for computing the lower convex envelope in the Gray-Wyner
System

9
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@ Hypercontractive Region Evaluation

@ Main Results on Hypercontractivity
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Hypercontractive Region Evaluation

Main Results on Hypercontractivity

Main result 1: forward hypercontractive region

Binary Erasure Channel (BEC) with uniform input: [Nair-Wang 2016]

Consider a uniformly distributed binary valued X passed through a BEC with
erasure probability € producing the ternary output Y. For Aj, Ay € (1, 00),

o when € — < 3(\y — 1), the forward hypercontractive region for (X,Y) is
characterized by (A1 —1)(A2 — 1) > 1—¢;

o When ¢ — 1 > 3(\; — 1), the forward hypercontractive region for (X,Y) is
strictly inside (A\; —1)(A2 — 1) > 1 —e.

E;&;-‘fhi“s;,
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Hypercontractive Region Evaluation

Main Results on Hypercontractivity

Main result 1: forward hypercontractive region

Binary Erasure Channel (BEC) with uniform input: [Nair-Wang 2016]

Consider a uniformly distributed binary valued X passed through a BEC with
erasure probability € producing the ternary output Y. For Aj, Ay € (1, 00),

o when € — < 3(\y — 1), the forward hypercontractive region for (X,Y) is
characterized by (A1 —1)(A2 — 1) > 1—¢;

o When ¢ — 1 > 3(\; — 1), the forward hypercontractive region for (X,Y) is
strictly inside (A\; —1)(A2 — 1) > 1 —e.

Remarks:

o (A1 —1)(A2 — 1) > 1 — € is tight when e < ;
o (A1 —1)(A2 — 1) > 1 — € is tight when Ay > 3.

WANG Yannan
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Hypercontractive Region Evaluation

Forward hypercontractive region for BEC with uniform input

Define X, := )\ , the Holder conjugate of Ao.

When € = 0.2,
A1
=== A1=(1—e)Aj+e, (0<AL<1)
S A1=(—eAote,  (AG>1)
—_— A=A}
1t+------------ g
// !
’, I
// 1
-7 |
.7 !
// !
- I
e |
g |
?
1 )\/ . )\2
5=
Ao —1
Figure 3: Forward hypercontractive region: € = 0.2 Qg@
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Hypercontractive Region Evaluation

Main Results on Hypercontractivity

Main result 2: reverse hypercontractive region

Binary Erasure Channel (BEC) with uniform input: [Nair-Wang 2017]

Consider a uniformly distributed binary valued X passed through a BEC with
erasure probability € producing the ternary output Y. When Ay < 0, (X,Y) is
(A1, A2) reverse hypercontractive if and only if

In2
A< n T

C In2— 21 In[(1 - €)2% T + ¢

Remarks:

e The region (A; — 1)(Ay — 1) > 1 — € is not tight.

9
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Hypercontractive Region Evaluation

Reverse hypercontractive region for BEC with uniform input

Define X, := )\ , the Holder conjugate of Ao.

When € = 0.2,
A1
-—- )\1:(1—6)),2+e, (o<,\’2<1)
S A1=(—eAote,  (AG>1)
—_— A=A}
1t------- g
I
I
1
py |
// !
// !
- I
e |
g |
?
1 )\/ . )\2
5=
Ao —1
Figure 4: Reverse hypercontractive region: € = 0.2 Qg@
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Proof sketch for forward hypercontractive region

Case 1: \g > 2
e Mimic Janson’s proof technique for BSC [Janson 1997]: Denote X, := %, by

Holder’s inequality, suffices to show that given (\y — 1)(A2 — 1) > 1 — ¢,

ITEC Iy < 1A (Xn

W.lo.glet f(0) =1-9, f(1) =1+ ¢, compare the coefficients of Taylor
expansion around ¢ = 0 for both sides.

e
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Proof sketch for forward hypercontractive region

Case 1: \g > 2
e Mimic Janson’s proof technique for BSC [Janson 1997]: Denote X, := %, by

Holder’s inequality, suffices to show that given (A —1)(A2 — 1) > 1 —¢,

ITEC Iy < 1A (Xn

W.lo.glet f(0) =1-9, f(1) =1+ ¢, compare the coefficients of Taylor
expansion around ¢ = 0 for both sides.

e Works for binary input symmetric output channel with binary uniform inputs X
and Y is obtained via a symmetric channel Wy x.

e
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Proof sketch for forward hypercontractive region

Case 2: 1 < X2 < 2 denote the joint distribution of binary erasure channel with
(6)

uniform input as p

e Needs to show when (A; —1)(Aa —1) =1 —¢,

1
max D(qx||px D(gxv|lpxy

0 ife—12<3(X—1)
>0 otherwise

e Non-convex optimization problem: Maximum happens in the interior.

o Trivial stationary point gxy = pf}?,c(s).

e
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Proof sketch for forward hypercontractive region

Case 2: 1 < X2 < 2 denote the joint distribution of binary erasure channel with
(6)

uniform input as p

e Needs to show when (A; —1)(Aa —1) =1 —¢,
1 BEC(e) BEC(€) BEC(e)
e Pl )+ DGy = Dl iy )

_Jo ifefégg()\gfl)
>0 otherwise

e Non-convex optimization problem: Maximum happens in the interior.

Trivial stationary point ¢xy = pggc(s).

e Proof idea: the stationary points of this 3-variable function are restricted on a
1-parameter path.

e
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Proof sketch for forward hypercontractive region

2 s .
Case 2: 1< g <2,8et1—6= QOEQJSZE’ from the first order conditions, any (strictly)

interior stationary points can be parameterized in

axy =[q00, 0E; ©1E, q11]
CTA-6%1 -0 (1-6) c(1+6) (1—e)(1+8)%
N A ’ A 7 A 7 A

where A = 2¢ 4 (1 — €)[(1 4 6)*2 + (1 — 6)*2] is the normalizing constant and &
satisfies that

e—1

(1= )1 = 0) T +¢(1—8)75T = (1— )1+ 8)%=7T +¢(1+06)527.

e
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Proof sketch for forward hypercontractive region

2 . .
Case2: 1< X< 2,88t 1—6= QOEQJSZE’ from the first order conditions, any (strictly)

interior stationary points can be parameterized in

axy =[q00, 0E; ©1E, q11]
(A6 1—0 c(1-6) c(1+6) (1—e)(1+ 8
N A ’ A 7 A 7 A

where A = 2¢ 4 (1 — €)[(1 4 6)*2 + (1 — 6)*2] is the normalizing constant and &
satisfies that

e—1

(1= )1 = 0) T +¢(1—8)75T = (1— )1+ 8)%=7T +¢(1+06)527.

o When (e — 3) < (X2 — 1) and Xy € (1,2), this equation has only one root at

6 = 0, implying only one stationary point ¢xy = pf}f,c(e);

e
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Proof sketch for forward hypercontractive region

2 . .
Case2: 1< X< 2,88t 1—6= qOE%SZE’ from the first order conditions, any (strictly)

interior stationary points can be parameterized in

axy =[q00, 0E; ©1E, q11]
(A6 1—0 c(1-6) c(1+6) (1—e)(1+ 8
N A ’ A 7 A 7 A

where A = 2¢ 4 (1 — €)[(1 4 6)*2 + (1 — 6)*2] is the normalizing constant and &
satisfies that

(1= (1= 0)%T +e(1—8)% T = (1—e)(1+06)%T +e(l+0)%T.

o When (e — 3) < (X2 — 1) and Xy € (1,2), this equation has only one root at
R . . . _ _BEC(e),
0 = 0, implying only one stationary point ¢xy = pyxy = ';

o When (e — 3) > 2(\2 — 1), Taylor series expansion around § = 0 gives that
EC(e)

BEC( BEC B
DiaxPF") + 5 Dlav 97" = DlaxylpF5°) > 0

51”

ey
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Proof sketch for reverse hypercontractive region

When A\ < 0, need to determine (A, )\2) such that

1 €
minmax — D(gx HpBEC( ))

dx TXYy /\

+ D(q lpy

A2

— D(rxvyllpxy >0

Write ¢x(0) =z, rxy(0,0) =7, rxy(1,1) = s and denote above 3-variable function
as f(x,r,s). Define, for x € [0, 1]

g(:):) = r,s:rG[Ofil]i)é[O,l—x] f(x’ " 3).

Wish to determine (A1, A2) (with A2 < 0) such that g(z) > 0,Vx € [0, 1].

9
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Proof sketch for reverse hypercontractive region

When A\ < 0, need to determine (A, )\2) such that

1 €
minmax — D(gx HpBEC( ))

dx TXYy /\

+ D(q lpy

A2

— D(rxvyllpxy >0

Write ¢x(0) =z, rxy(0,0) =7, rxy(1,1) = s and denote above 3-variable function
as f(x,r,s). Define, for x € [0, 1]

g(:):) = r,s:rG[Ofil]i)é[O,l—x] f(x’ " 3).

Wish to determine (A1, A2) (with A2 < 0) such that g(z) > 0,Vx € [0, 1].
Easy direction: From above, we require g(0) > 0. This implies that

In2

A1 < T
In2— Ai—gl In[(1 —€)2%2-T 4 ¢

e
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Proof sketch for reverse hypercontractive region

When A\ < 0, need to determine (A, )\2) such that

1 €
minmax — D(gx HpBEC( ))

dx TXYy /\

+ D(q lpy

A2

— D(rxvyllpxy >0

Write ¢x(0) =z, rxy(0,0) =7, rxy(1,1) = s and denote above 3-variable function
as f(x,r,s). Define, for x € [0, 1]

g<$) = r,s:rG[Ofil]i)é[O,l—x] f(x’ " 3).

Wish to determine (A1, A2) (with A2 < 0) such that g(z) > 0,Vx € [0, 1].
Easy direction: From above, we require g(0) > 0. This implies that

In2

A1 < T
In2— /\2)\—;1 In[(1 —€)2%2-T 4 ¢

Non-trivial direction: we show that
e g(z) is symmetric along x = % (Easy - by symmetry of the (X, Y)-distribution)
e g(x) is convex at x = % and ¢’ (%) =0,g (%) = 0. (Easy)

e g(z) has only one stationary point, i.e., ¢’(z) = 0, between (0, ). (Needs to us
the 1-parameter path) Ces
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Related Open Questions

To conclude,
@ In our proofs, local analysis suffices to compute the hypercontractive region.

@ The critical behavior happens at the boundary for reverse hypercontractivity.

9
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Related Open Questions

To conclude,
@ In our proofs, local analysis suffices to compute the hypercontractive region.

@ The critical behavior happens at the boundary for reverse hypercontractivity.

How to determine hypercontractive parameters for a general joint distribution?
o In other words, does the functional

/\iH(X) + %H(Y) — H(XY) — Epyy (dxv)
1 2

have nice geometric properties (or low dimensional reparametrizations) that
allow such local arguments to work?

o If so, can we devise an algorithm to efficiently approximate the
hypercontractivity parameters?

e
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Lower Bounds on Distributed Source Coding

Outline

© Lower Bounds on Distributed Source Coding
e Korner and Marton’s Modulo Two Sum Problem
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Lossless source coding with two helpers

My € [1:2nFo)

A Sender 0: fé”) Receiver: g(") on

M € [1:2nF)

X" ——Sender 1I: fl(n)

My € [1:2nF2)

YTL

Sender 2: fz(n)

Figure 5: Lossless source coding with two helpers

@ The optimal rate region is unknown for a general pxy z.
e Consider the projection Ry = 0:

9
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Lossless source coding with two helpers

AL Receiver: ¢(™ AL

My € [1:2nfr)

X" ——Sender 1: fl(n)

My € [1:2nF2)
YTL

Sender 2: fz(")

Figure 5: Lossless source coding with two helpers

@ The optimal rate region is unknown for a general pxy z.
e Consider the projection Ry = 0:

Slepian-Wolf region [Slepian-Wolf 1973]

When pxy 7 satisfies that Z = (X,Y), the optimal rate region is given by
(achieved by random binning)

Ry > H(XY)
Ry > H(Y|X)
Ry + Ry > H(XY)
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Lossless source coding with two helpers

AL Receiver: ¢(™ AL

My € [1:2nfr)

X" ——Sender 1: fl(n)

My € [1:2nF2)

YTL

Sender 2: f2(")

Figure 5: Lossless source coding with two helpers

@ The optimal rate region is unknown for a general pxy z.
e Consider the projection Ry = 0:

Ko6rner-Marton region [Kérner-Marton 1979
When X, Y binary and pxyz satisfies that Z = X @Y, a rate pair (R, Re) is
achievable by random linear codes if

Ry > H(Z)

Ry > H(Z)

The optimal rate region for Z = X @Y is unknown for a general pxy. This is
referred to as Korner and Marton’s modulo two sum problem. P
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Lower Bounds on Distributed Source Coding

Korner and Marton’s Modulo Two Sum Problem

Known results on the optimal rate region

Exercise 16.23 in [Csiszar-Korner 2011]1
When pxy satisfies that H(Z) > min{H(X), H(Y)}, the optimal rate region for
Z =X @Y in GF(2) is given by Slepian-Wolf region:
Ry >H(X|Y),
Ry >H(Y|X),
Ry + Ry >H(XY).

1. Csiszar and J. Korner, Information theory: Coding theorems for discrete memoryless systerﬁ% -
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Lower Bounds on Distributed Source Coding

Korner and Marton’s Modulo Two Sum Problem

Known results on the optimal rate region

Exercise 16.23 in [Csiszar-Korner 2011]1
When pxy satisfies that H(Z) > min{H(X), H(Y)}, the optimal rate region for
Z =X @Y in GF(2) is given by Slepian-Wolf region:
Ry >H(X|Y),
Ry >H(Y|X),
Ry + Ry >H(XY).

Theorem 1 in [Kérner-Marton 1979

When pxy follows binary symmetric channel with uniform inputs, the optimal rate
region for Z = X @Y in GF(2) is given by Kérner-Marton region:
Ry >H(Z),

Ry >H(Z).

1. Csiszar and J. Korner, Information theory: Coding theorems for discrete memoryless systerfi&s -
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Lower Bounds on Distributed Source Coding

Korner and Marton’s Modulo Two Sum Problem

Known results on the optimal rate region

Exercise 16.23 in [Csiszar-Korner 2011]1
When pxy satisfies that H(Z) > min{H(X), H(Y)}, the optimal rate region for
Z =X @Y in GF(2) is given by Slepian-Wolf region:
Ry >H(X|Y),
Ry >H(Y|X),
Ry + Ry >H(XY).

Theorem 1 in [Kérner-Marton 1979
When pxy follows binary symmetric channel with uniform inputs, the optimal rate
region for Z = X @Y in GF(2) is given by Kérner-Marton region:

Ry >H(Z),

Ry >H(Z).

This part: more distributions pxy are discovered for optimality of Slepian-Wolf
coding scheme and Korner-Marton coding scheme on weighted sum rate.

PR o . . . L;Q-?Difé;
1. Csiszar and J. Korner, Information theory: Coding theorems for discrete memoryless systems
WANG Yannan
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Achievable region and lower bound

Ahlswede-Han achievable region: [Ahlswede-Han 1973]

When Z = X @Y, a rate pair (R, Rg) is achievable via a combination of random
linear codes and random binning if

Ry > I(U; X|V) + H(Z|UV)

Ry > I(V;Y|U) + H(Z|IUV)
Ri+ Ry > I(UV; XY) + 2H(Z|UV)

for some U and V that satisfy the Markov chain U - X - Y — V.

9
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Achievable region and lower bound

Ahlswede-Han achievable region: [Ahlswede-Han 1973]

When Z = X @Y, a rate pair (R, Rg) is achievable via a combination of random

linear codes and random binning if

R > I(U; X|V) + H(Z|UV)
Ry > I(V;Y|U) + H(Z|UV)
Ri+ Ry > I(UV; XY) 4+ 2H(Z|UV)

for some U and V that satisfy the Markov chain U - X - Y — V.

Cut-set lower bound: [Kérner-Marton 1979]

Any achievable rate pair (Ry, R2) for the modulo sum problem must satisfy

Ry > H(Z|Y) = H(X|Y)
Ry > H(Z|X) = H(Y|X)
Ri1+ Ry > H(Z).

WANG Yannan Non-convex Functionals in IT
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Main result: A lower bound

A lower bound on modulo sum problem [Nair-Wang 2020]

Any achievable rate pair (Ry, R2) for the modulo sum problem must satisfy the
following constraints for any A > 1:

> i —
Ri+ ARy > H(XY)+ min \H(Z|U)~ H(Y|U)

> i —
ARy + Ry > H(XY)+ min \H(Z|V) — H(X|V)

Remark: From [Nair 2013]

jmin NH(ZU) = HYU) = =€ [HY) = AH(Z)]| .

where €| ngEO denotes the upper concave envelope of the function f(z) with respect
to z evaluated at x = xg.

9
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Lower Bounds on Distributed Source Coding

Proof sketch

For A > 1, any “good” sequence of codes will require that

n(R1 + )\Rg) + n(l + )\)En
> I(MyMay; X"Y™) + (A — 1) H (M| M)+ (1+ N)H(Z" | M, M)
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Proof sketch

For A > 1, any “good” sequence of codes will require that

n(Ri1 + AR2) + n(1 + Ne,
= H(X"Y™) — H(X"Y" M M) + (\ — 1) (M M) — (A — 1) H (M)

+ (1+ A H(Z" My My) — NH (M, M)

W F(X Y™+ ANH(Z" M M) + H(Z" M, M) — H(Z™Y™ M My) — H (M, My)
— (A= D)H(M)
Y H(xX Y™ + AH(Z"My) + AH (M|MyZ™)—H (Y™ My M) + 1(Z"; Y™ | My My)
— (A= 1D H(M,)
> nH(XY) + AH(Z"M,) — H(Y"M;) — (A — 1)H (M)
= nH(XY)+ \H(Z"|My) — H(Y"| M)
@ Step (a) uses H(X"Y" M My) = H(Z"X"Y" My M) = H(Z"Y™M;Ms,).
] Step (b) uses I(Zn, Yn|M1M2) = H(ZanMQ) + H(YanMg) - H(MlMg)— @
H(ZnYanMg) rrey
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Lower Bounds on Distributed Source Coding

Korner and Marton’s Modulo Two Sum Problem

Sinlge-letterize the lower bound

Lemma 3.1: Kérner-Marton identity (4.14) in [Kérner-Marton 1977]

Let A > 1 and let (X™,Y") be i.i.d distributed according to p(z,y) where X,Y take
values in a finite field. Let Z™ be obtained as Z; = X; @ Y;,i = 1,..,n, i.e. the
component-wise modulo sum on the field. Then for any A > 1 the following holds:

~ min  MH(Z"|U) - H(Y"|0)
UU—X"r—Y"

=n <U:UES€LY \H(Z|U) — H(Y|U)> .

9
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Sinlge-letterize the lower bound

Lemma 3.1: Kérner-Marton identity (4.14) in [Kérner-Marton 1977]

Let A > 1 and let (X™,Y") be i.i.d distributed according to p(z,y) where X,Y take
values in a finite field. Let Z™ be obtained as Z; = X; @ Y;,i = 1,..,n, i.e. the
component-wise modulo sum on the field. Then for any A > 1 the following holds:

~ min  MH(Z"|U) - H(Y"|0)
UU—X"r—Y"

=n <U:U9§Ly \H(Z|U) — H(Y|U)> .

e Evaluating the weighted sum rate lower bounds are non-convex optimization
problems:

Ri+ ARy > H(XY)+ min MH(Z|U) - H(Y|U)
U—=X—-Y

AR; + Ry > H(XY)+ min M\H(Z|V) - H(X|V)
VoY—X

o Next: When will this lower bound match Kérner-Marton region or Slepian-Wolf
region in terms of weighted sum rates?

ey
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Lower Bounds on Distributed Source Coding

Application to binary alphabets GF(2): Previous results

Notation: P(X =0) =z, P(Y =0[X =0)=¢,P(Y =1|X =1) =d.

Previous results: Optimal weighted sum rates R; + ARx.
When (c— 3)(d—3) <0(< H(Z)> H(Y)), Whenc=d,

1
A
Y o 05| |
O | |
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
P(X=0)== P(X=0)==
B R: +AR>>H(X)+AH (Z|X) —— Ri+AR2> (14N H(Z)

Figure 6: When is Slepian-Wolf region optimal Figure 7: When is Kérner-Marton region
optimal

L
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Lower Bounds on Distributed Source Coding

Application to binary alphabets GF(2): New Results

Notation: P(X =0) =z, P(Y =0[X =0)=¢,P(Y =1|X =1) =d.
Our work: When (¢ — 1)(d—3) > 0(< H(Z) < H(Y)),

Example 1: ¢=0.9,d = 0.6

0.5 | | |
0 0.25 0.5 0.75 1

P(X=0)==
B R1+AR2>H(X)+AH(Z|X) —— Ri4+AR2> (14N H(Z)
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Lower Bounds on Distributed Source Coding

Application to binary alphabets GF(2): New Results

Notation: P(X =0) =z, P(Y =0[X =0)=¢,P(Y =1|X =1) =d.
Our work: When (¢ — 1)(d—3) > 0(< H(Z) < H(Y)),

Example 2: ¢=0.7,d = 0.6

0.5 | | |
0 0.25 0.5 0.75 1

P(X=0)==
B R1+AR2>H(X)+AH(Z|X) —— Ri4+AR2> (14N H(Z)
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Lower Bounds on Distributed Source Coding Koérner and Marton’s Modulo Two Sum Problem

Comparison of the bounds

In [Ahlswede-Han 1983], Ahlswede and Han chose the following pxy given by

_|poo por| _ [0.003920 0.019920
PXY = 1pi0 pin| ~ |0.976080 0.000080
1072
47 (H(Z),H(Z))| —— Ahlswede-Han Achievable region
——  Lower bound (Theorem 1)
3.5 1 —_— Cutset lower bound
3 1
Ry
2.5 +
2 1
1.5 | ‘ (H(X),H(Y]X))
6.10-2 0.1 0.14 0.18
R E@
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Lower Bounds on Distributed Source Coding

Outline

© Lower Bounds on Distributed Source Coding

e Alternative Proofs to Quadratic Gaussian CEO Problem and Distributed Source
Coding Problem
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Lower Bounds on Distributed Source Coding |BI{aSIsiT= BSTeIit eI @feYe ErTea shue) oy (3408

Quadratic Gaussian CEO Problem

Y M, € [1:2"F1
’Channel 1. Wi }1—’ Encoder 1: fl(") L€l )

X" —9 Decoder: ¢ —— (X™, D)

’ Channel 2: Wy }T> Encoder 2: fg(n) Mo € [1: 27F)

Figure 8: generalized CEO distributed source coding

Distortion criterion: limsup,,_,.. E (l L d(X;, X'Z)) <D.

n
o Quadratic Gaussian CEO problem: d(X;, X;) = (X; — X;)?;
Yi=X+21,Z1 L X,Zy ~N(0,N1); Yo = X + Zo,Zy L X, Z5 ~ N(0, Na).
e Berger-Tung coding scheme [Berger 1978; Tung 1978; Prabhakaran-Tse-
Ramachandran 2004] is shown to be optimal by Oohama [Oohama 2005].

3= === =
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Lower Bounds on Distributed Source Coding |BI{aSIsiT= BSTeIit eI @feYe ErTea shue) oy (3408

Quadratic Gaussian CEO Problem

A lower bound to generalized CEO problem
Consider previous generalized CEO distributed source coding on X, Y7, Y> satisfying that

n—oo

Y1 — X — Y5 with the distortion criterion lim sup E % Zd(Xi, XZ) < D. For any X > 1, any
i=1
achievable triple (R1, Rz, D) must satisfy that
Ry + ARy >H(XY1) + AH (Ya|X) + (A — 1) max { H(X|UAWQ) — H(X|XQ),0}
—H(X|XQ) - HV|XU1WQ) — AH (Y2| XU2W Q)
Ry + ARy >H(XY2) + AH(Y1|X) + (A — 1) max { H(X|U:WQ) — H(X|XQ),0}
— H(X|XQ) — HY2|XUsWQ) — AH (Y1 | XU WQ)
subject to the constraints
Ui <+ QWY1+~ QWX — QWY2 — Uz
QW L XY1Ys
X« QWULU; — X1 Ys

E[d(X,X)] < D.

v

Proof sketch: W; = X"/ Uy; = MlYli_l, Usy; = MQY;_I. Q is the uniform distribution

over i = 1,--- ,n. This is in a similar spirit as the lower bound [Wagner-Anantharam
2008]. @
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Quadratic Gaussian CEO Problem

A lower bound to generalized CEO problem
Consider previous generalized CEO distributed source coding on X, Y7, Y> satisfying that

n—oo

Y1 — X — Y, with the distortion criterion lim sup E % Zd(Xi, XZ) < D. For any A\ > 1, any
i=1
achievable triple (R1, Rz, D) must satisfy that
Ry + ARy >H(XY1) + AH (Ya|X) + (A — 1) max { H(X|UAWQ) — H(X|XQ),0}
—H(X|XQ) - HV|XU1WQ) — AH (Y2| XU2W Q)
Ry + ARy >H(XY2) + AH(Y1|X) + (A — 1) max { H(X|U:WQ) — H(X|XQ),0}

— H(X|XQ) — HY2|XUsWQ) — AH (Y1 | XU WQ)
subject to the constraints
Ui <+ QWY1+~ QWX — QWY2 — Uz
QW L XY1Ys
X« QWULU; — X1 Ys

E[d(X, X)] < D.

v

Rotation techniques in [Geng-Nair 2014] can show that Gaussian Uy, U and constant
@, W minimizes above weighted sum rate lower bound.

Brees

WANG Yannan Non-convex Functionals in IT June 2021 33 /45



Lower Bounds on Distributed Source Coding |BI{aSIsiT= BSTeIit eI @feYe ErTea shue) oy (3408

Quadratic Gaussian Distributed Source Coding

yr My € [1:27Fr ~
’Channel 1: W }1—> Encoder 1: fl(n) el : (Y?", D)
X" —e Decoder: g(™
’ Channel 2: Wy }Y—"> Encoder 2: f2(n) Mo € [1:2nhe) (}Afzna Do)
z :

Figure 9: Generalized Distributed Source Coding with auxiliary source structure

lim sup,, o0 B (£ X201 d(Vis, ¥13)) < Dy, limsup,,_o0 B (1 50, d(Yai, Vi) ) < Do.
o Quadratic Gaussian distributed source coding problem: d(X;, X;) = (X; — X;)?,

)

e Berger-Tung coding scheme [Berger 1978; Tung 1978; Prabhakaran-Tse-
Ramachandran 2004] is shown to be optimal by [Wagner-Tavildar-Viswanath
2008].

o Assume there exists some auxiliary source X such that Y7 < X — Y5.

9
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Quadratic Gaussian Distributed Source Coding

A lower bound to generalized distributed source coding

Consider the generalized quadratic distributed source coding on 2-DMS (Y1, Y2) with the distortion
criterion limsup,,_, E (% ?:1 d(Yis, Yh)) < D; and limsup,,_, . E (% ZLI d(Ya, Ygl)) < Ds.
Assume there exists some auxiliary source X such that Y7 and Y are obtained by passing X through
some discrete memoryless channel W7 and W» respectively. For any A > 1, any achievable triple

(R1, Rz, D1, D2) must satisfy that

Ri+ ARy >H(XY1) + AH(Y2|X) — H(X[V1Y2Q) — H(Y1| XU, QW)
+ (A = Dmax { H(X[U:QW) — H(X|V1Y2Q),0} — AH(Y2|XU2QW)
Ro + ARy >H(XYs) + AH(Y1|X) — H(X[V1Y2Q) — H(Y2| XU2QW)

+ (A = Dmax { H(X|U2QW) — H(X|Y1Y2Q),0} — AH(Y1|XU1QW)
subject to the constraint
U+ QWY1 + QWX — QWY2 — Us

QW L XY1Ya
ViYs ¢ QWULUs — XY1Ys
E[d(Y1,Y1)] < D1, E[d(Y2, ¥2)] < D2

This is also in a similar spirit as the lower bound [Wagner-Anantharam 2008].

[=¢ iﬂi"‘é‘;—,
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Convexity of Fisher Information

Outline

@ Log-Convexity of Fisher Information
o Motivations
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Log-Convexity of Fisher Information

Motivations

Motivation 1: Non-convex optimization problem

A non-convex optimization problem

Let Wy |x denote a channel that maps input random variable X with distribution ux
into the output random variable Y with distribution py. Consider the non-convex
optimization problem, that is, computing the maximum over ux of

Fx(ux) == AH(X) — H(Y)

where 0 < \ <1 is some fixed constant.

9
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Log-Convexity of Fisher Information Motivations

Motivation 1: Non-convex optimization problem

A non-convex optimization problem

Let Wy |x denote a channel that maps input random variable X with distribution ux
into the output random variable Y with distribution py. Consider the non-convex
optimization problem, that is, computing the maximum over ux of

Fx(ux) == AH(X) — H(Y)

where 0 < \ <1 is some fixed constant.

Mrs Gerber’s Lemma [Wyner-Ziv 1973]

When the channel Wy x is the binary symmetric channel with flipping probability p,
under the reparametrization of ux, defined by px(u) = Hy ' (u),

F(u) = Au — Ho(p * Hy '(u)).

is concave in u for any A\. Here a xb:=a(1 —b) + (1 — a)b.

Question: Is there an analogous result in the additive Gaussian noise channel settin
that is, Y = X + W where W ~ N(0,0%)? ..
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Log-Convexity of Fisher Information BBYIIFREIFTS1E]

Motivation 1: Non-convex optimization problem

o In the continuous world, to make moving direction limited in one dimension, we
assume that

X=X +VtZ,t>0,Z ~ N(0,1)
Y; =X, + W,W ~ N(0,0?)

9

E;&;-‘fhifé;,

WANG Yannan Non-convex Functionals in IT June 2021 37 /45



Log-Convexity of Fisher Information Motivations

Motivation 1: Non-convex optimization problem

o In the continuous world, to make moving direction limited in one dimension, we
assume that

X=X +VtZ,t>0,Z ~ N(0,1)
Y; =X, + W,W ~ N(0,0?)

o 1;X: the prob;tbﬂity 2d(i(nsity function of X + v/tZ. uX satisfies the heat flow
equation: ag; = %865 i with initial condtion u{ (z) = f(z), where f(x) is the
probability density function of X.

o The differential entropy h(X) := — [ f(z)In f(z)dx.

e
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Log-Convexity of Fisher Information Motivations

Motivation 1: Non-convex optimization problem

o In the continuous world, to make moving direction limited in one dimension, we
assume that

X=X +VtZ,t>0,Z ~ N(0,1)
Y; =X, + W,W ~ N(0,0?)

o 1;X: the probability density function of X + v/tZ. uX satisfies the heat flow
equation: agf( = %825 §X with initial condtion g (x) = f(x), where f(z) is the
probability density function of X.

o The differential entropy h(X) := — [ f(z)In f(z)dx.

e Want a parametrization ¢t = ¢(u) such that A(X + /¢(u)Z) is linear in v and
the output entropy, h(uy) = h(X + \/¢(u)Z + W) is convex in u.
A bit of algebra immediately shows that this question is equivalent to asking
whether the Fisher information

16 = [ (5o <x>)2ui<<x>dx

is log-convex in t, for all random variables X. e
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Log-Convexity of Fisher Information BBYIIFREIFTS1E]

Motivation 2: Completely monontone and log-convexity

o Let X bea random variable with a finite variance P. Let g(o)( t) := h(p),
gg()(t) = atk h( ). De Bruijin’s identity tells that

9, x
ot
e Let Z ~ N(0, P). In Section 12 of [McKean 1966], McKean observes that for any

£ 0,95 (1) > gy (1) 2 0, g5 (1) < g (1) < 0, and g5 (1) > g (1) > 0.
Therefore he conjectured that

I(p¥) =2

Mckean’s conjecture [McKean 1966]
VX, >0, (-1 @) > (=1)k P (1) > 0,vk > 3. J

o
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Log-Convexity of Fisher Information Motivations

Motivation 2: Completely monontone and log-convexity

o Let X bea random variable with a finite variance P. Let g(o)( t) := h(p),
gg()(t) = atk h( ). De Bruijin’s identity tells that

9, x
ot
e Let Z ~ N(0, P). In Section 12 of [McKean 1966], McKean observes that for any

£ 0,95 (1) > gy (1) 2 0, g5 (1) < g (1) < 0, and g5 (1) > g (1) > 0.
Therefore he conjectured that

I(p¥) =2

Mckean’s conjecture [McKean 1966]
VX, >0, (-1 @) > (=1)k P (1) > 0,vk > 3. J

e In [Cheng-Geng 2015], ¢ S )( t) > 0, and g&?) (t) <0 for any t > 0 are established.
They made a weaker conjecutre that (—l)kgg? (t) > 0. In other words,
() = 2g( ) (t) is a completely monotone function of ¢, for all X.

e
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Log-Convexity of Fisher Information Motivations

Motivation 2: Completely monontone and log-convexity

An alternate characterization of completely monotone function:

Bernstein’s theorem

Let g(t) : [0,00) — [0,00) be a continuous and infinitely differentiable function. The
following are equivalent:
e g is completely monotone: Vn € N,Vt > 0, (—1)"¢g(™(t) > 0;

@ g is the Laplace transform of a finite Borel measure v in R, :

Ve € Ry, g(z) = / e "du(t).
0

e Via this theorem, one can show that any completely monotone function g(t) is
log-convex with respect to ¢, see [Fink 1982].

o If I(11{) is a completely monotone function with respect to ¢, then In I(u;¥) is
convex with respect to t.

This part: We established that I(u;*) is log-convex in ¢, thus resolving affirmatively
Conjecture 2 in [Cheng-Geng 2015].

51”

ey
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g-Convexity of Fisher Information

Outline

© Log-Convexity of Fisher Information

@ Proof to log-convexity of Fisher information
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Y-S O1e3 ARV S S TR M SV T M Bibisl gosbhntelsM Proof to log-convexity of Fisher information

Notations and Previous Results

Proof techniques:

@ The ideas and techiniques starts from a short proof to the ”concavity of entropy
power” (Costa’s EPI) by C. Villani [Villani-2000], which is in turn motivated by
calculations of Bakry and Emery [Bakry-Emery 1985].

e Later, [Cheng-Geng 2015] and [Zhang-Anantharam-Geng 2018] followed the work
and developed these tools and notations.

e
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Notations and Previous Results

Proof techniques:

@ The ideas and techiniques starts from a short proof to the ”concavity of entropy
power” (Costa’s EPI) by C. Villani [Villani-2000], which is in turn motivated by
calculations of Bakry and Emery [Bakry-Emery 1985].

e Later, [Cheng-Geng 2015] and [Zhang-Anantharam-Geng 2018] followed the work
and developed these tools and notations.

Notations:
- X _ OFInpX(2)

o v(z) :=Inpy; (x),t >0, and vg(x) == —5 F——,k € Zy,

° (p) = [p o' (x)dz

Key idea: Under these notations, our problems can be rewritten as inequalities in
terms of ([];_; UZ?’% where r,m;, k; € Z.

e
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Notations and Previous Results

Proof techniques:

@ The ideas and techiniques starts from a short proof to the ”concavity of entropy
power” (Costa’s EPI) by C. Villani [Villani-2000], which is in turn motivated by
calculations of Bakry and Emery [Bakry-Emery 1985].

e Later, [Cheng-Geng 2015] and [Zhang-Anantharam-Geng 2018] followed the work
and developed these tools and notations.

Notations:

o v(x) :=1Inyu(x),t >0, and vy(z) = %, keZy,

° (p) = [ppui (x)dz
Key idea: Under these notations, our problems can be rewritten as inequalities in
terms of ([T;_, v*), where r,m;, k; € Z.

Integration by parts formula, Lemma 3 in [Zhang-Anantharam-Geng 2018]

For k > 2, let p(x) be any “reasonably smooth” function.

dyp
_ —vp_1) = 0.
(v + pvivE_1 + 50 Uk 1)

@ ¢ could be chosen in the form of [[;_; v} (z).
o This gives the linear dependence relationships among the terms (IJ;_; v;"). u@
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Log-Convexity of Fisher Information

Villani’s proof to Costa’s EPI

Fisher information and its derivatives

For ¢ > 0, Fisher information I(y;X) and its derivatives up to second order are:

I(1") = (v),

d
L1y = 3,
d2
@I(uf() = (V3 + 20302 4 4vyvous).

WANG Yannan Non-convex Functionals in IT




Log-Convexity of Fisher Information

Villani’s proof to Costa’s EPI

Fisher information and its derivatives

For ¢ > 0, Fisher information I(y;X) and its derivatives up to second order are:
1) = (vf),
d

L) = —(B),
d2

@I(p,f) = (V3 + 20302 4 4vyvous).

Costa’s EPI in scalar case, [Costa 1985]

For any random variable X and Z L X, Z ~ N(0,1), e2h(X+ViZ) ig concave in t > 0.
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Log-Convexity of Fisher Information

Villani’s proof to Costa’s EPI

Fisher information and its derivatives

For ¢ > 0, Fisher information I(y;X) and its derivatives up to second order are:

I(1") = (v),

d
L1y = 3,
d2
@I(,u,f() = (V3 + 20302 4 4vyvous).

Costa’s EPI in scalar case, [Costa 1985]

For any random variable X and Z L X, Z ~ N(0,1), e2h(X+ViZ) ig concave in t > 0.

v

Proof [Villani-2000]:

Computing second derivative of e2X +VIZ) with respect to t yields:

U U2 =
HOHVID) [ (a8 4+ (03)2] <0 EHT () + (u)? <0

- =)
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Log-Convexity of Fisher Information

Proof to log-convexity of Fisher information

Main result

Log-convexity of Fisher information in scalar case [Ledoux-Nair-Wang 2020]
Let X be a random variable on some probability space (2, .4, P) with values in R,
and Z 1 X,Z ~ N(0,1). Consider X; := X + v/tZ,t > 0, with probability density

function p;X (x) with respect to the Lebesgue measure on R. The Fisher information
of X; is log-convex in ¢, i.e.

1) = [ (D)) (o)

is convex in ¢.

9

L;h;"—hifé;,
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Main result

Log-convexity of Fisher information in scalar case [Ledoux-Nair-Wang 2020]

Let X be a random variable on some probability space (2, .4, P) with values in R,
and Z 1 X,Z ~ N(0,1). Consider X; := X + v/tZ,t > 0, with probability density
function p;X (x) with respect to the Lebesgue measure on R. The Fisher information
of X; is log-convex in ¢, i.e.

1) = [ (D)) (o)

is convex in ¢.

Proof sketch: Log-convexity of Fisher information is equivalent to
d ? ¥y 42 X
(dt (it )) < (1) L (i)

In terms of ([T;_; vj*), it is equivalent to showing

(v ) < (v )(v3 + 21}11)2 + 4vjvavs).

9

== s a2y
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Proof continued:

In integration by parts formula, choosing k = 2, p = vo and k = 2, ¢ = v} will lead to:

{ (v3) = —(vivy + v1v3)
(viva) = —3

Lob)
=(v3) = —(v1v3 + Qvivy — TU1>,VOZ eR
=(v3) = —(v1(v3 + avivz — 3 v7)), Vo € R
ComRIIN 292 < (02) (s + oaws — o)), o € R

9
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Proof continued:

In integration by parts formula, choosing k = 2, p = vo and k = 2, ¢ = v} will lead to:

{ (v3) = —(vivy + vivg)
2
v

(vfva) = —5(vi)
=(vy) = —(v1v3 + awivy — TU1>,VOZ eR
=(v3) = —(v1(v3 + avivz — 3 v7)), Vo € R
. 1—
Camhgghwam(”%)Z < (v}){(v3 + avivy — 3 avf)Q),Va € R.

To show
(v3)? < (v}) (V3 + 20iv3 + dv1vav3).
Suffices to show that

1—
avi’)2> < (vg + 21)%2;% + 4v1v9u3)

((v3 + avivy —

holds for some a € R.
We prove it for a = 2 by integration by parts formula and some calculation.
WANG Yannan Non-convex Functionals in IT June 2021
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Open: Generalization of log-convexity to higher dimensions

@ One clear question that is definitely worth addressing is to determine whether
the log-convexity of Fisher information along the heat flow also holds for random
vectors.

o In particular we ask, whether

<d3h(X” + ﬁzw) (dh(X” + \/Ezn)>

>

dt?

Eh(X" +Viz")\’
dt3 dt

where X" and Z"(~ N (0, I,,)) are independent random vectors taking values in
R™.

o If X™ has independent components, then an application of the Cauchy-Schwartz
inequality immediately implies affirmatively the inequality above.

L)

e
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Summary: Take-aways

In this talk, we studied several non-convex optimization problems:

e Hypercontractive region evaluation for the binary erasure channel

e Distributed source coding

e Modulo sum problem: Obtained improved lower bounds
o Gaussian setting: Alternate proofs of optimality

e Log-convexity of Fisher information: Resolved the log-convexity of Fisher
Information conjecture.
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Summary: Take-aways

In this talk, we studied several non-convex optimization problems:
e Hypercontractive region evaluation for the binary erasure channel

e Distributed source coding

e Modulo sum problem: Obtained improved lower bounds
o Gaussian setting: Alternate proofs of optimality

e Log-convexity of Fisher information: Resolved the log-convexity of Fisher
Information conjecture.

Thank you! Any questions are welcome!

[=¢ iﬂi"‘é‘;—,
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Supplementary slides to Introduction: Channel coding

M e [1:2n8—

Xn

sender: f(™

DMC WY|X

Y’V’L

receiver: ¢

—M € [1:2"F]

Figure 10: Point-to-point communication channel model

Theorem (Shannon 1948)

The capacity of a DMC Wy |x is given by

C(Wyx) ={R>0:R< n;axI(X;Y)}.
X

WANG Yannan
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Supplementary slides to Introduction: Channel coding

xn yn N
M € [1:2"]—sender: f™ DMC: Wy x receiver: ¢ (—N € [1: 2]

Figure 10: Point-to-point communication channel model

o {R>0: R <maxy, I(X;Y)} is an achievable rate region for DMC Wy-|x;

o Optimality: Suffices to show for any DMC Wy x and its product W)@‘QX

max [(X;X9;Y1Ys) = QI%aXI(X;Y)
X

DX Xo

e It belongs to the non-convex functional family: Let ¢ > 0,

max [(X;Y) = lim max [(X;Y) — ¢ Y px(2) D(py|x=a|[Wy|x=s)

X cC—00 PXY
b b zeX
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Supplementary slides to Hypercontractivity: g(x) has only one

stationary point between (0, 3)

o Recall g(7) := max, sre(0,4),se[0,1-2] f (T, 7 9).
Hence any stationary point of g(z) will be a stationary point of f(z,r,s).

2(z—r)
1—r—s

o Let y = ; we know from forward hypercontractivity proof

the stationary points of f(z,r,s) are in 1-1 correspondence with the roots of

1—¢ 1—c¢ /
Ty T = 2y 2y

Hence suffices to show that there is exactly one root of above equation for
y € (0,1).

o This can be shown by taylor expansion and a key observation on the sign change
patterns of the coefficients.
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Supplementary slides to modulo sum problem: Single-letterize the
lower bound on

Lemma 3.1

Let A > 1 and let (X", Y™) be i.i.d distributed according to p(x,y) where X, Y take
values in a finite field. Let Z™ be obtained as Z; = X; ® Y;,7 = 1,..,n, i.e. the
component-wise modulo sum on the field. Then for any A > 1 the following holds:

~ min  MH(Z"|U) - H(Y"|0)
U.U—X"r—Y"

—n (U:Urgi)?w NH(Z|U) H(Y\U)) .

9

g@‘thﬁ‘g;,
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Supplementary slides to modulo sum problem: Single-letterize the
lower bound on

Lemma 3.1

Let A > 1 and let (X", Y™) be i.i.d distributed according to p(x,y) where X, Y take
values in a finite field. Let Z™ be obtained as Z; = X; ® Y;,7 = 1,..,n, i.e. the

component-wise modulo sum on the field. Then for any A > 1 the following holds:

~ min  MH(Z"|U) - H(Y"|0)
U.U—X"r—Y"

—n (U:Urgi)?w NH(Z|U) H(Y\U)) .

Proof sketch

e Taking i.i.d. copies of the minimizer of the right hand side, left hand side is at
most the value of right hand side.

WANG Yannan
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Supplementary slides to modulo sum problem: Single-letterize the
lower bound on

Lemma 3.1

Let A > 1 and let (X", Y™) be i.i.d distributed according to p(x,y) where X, Y take
values in a finite field. Let Z™ be obtained as Z; = X; ® Y;,7 = 1,..,n, i.e. the

component-wise modulo sum on the field. Then for any A > 1 the following holds:

min  AH(Z"|U) — H(Y"|0)

U:U—sXn—syn

—n (U:Urgi)?w NH(Z|U) H(Y\U)) .

Proof sketch

e Taking i.i.d. copies of the minimizer of the right hand side, left hand side is at
most the value of right hand side.

e The other direction follows from Markov chain (U, Y, Z7Y = Xi = (Yi, Z;)
and Koérner-Marton identity.
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Supplementary slides to modulo sum problem: Conditions for
lower bound to be tight

Lemma 3.2

The lower bound for the weighted sum-rate Ry + AR, for A > 1 given in Theorem 1
is optimal, i.e. matches the weighted sum-rate of the optimal rate region, if either of
the following conditions hold:

(1) CuaH(Y) — )\H(Z)Hp(x) = H(Y)—AH(Z) and Y is independent of Z,
(1) € [H(Y) — )\H(Z)Hp(x) =HY|X)-\H(Z|X).

Further if condition (7) holds for some A\; > 1, then it will also hold for 1 < X\ < Ay;
and if condition (iz) holds for some A9 > 1, then it will also hold for A > As.
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Supplementary slides to modulo sum problem: Conditions for
lower bound to be tight

Lemma 3.2

The lower bound for the weighted sum-rate Ry + AR, for A > 1 given in Theorem 1
is optimal, i.e. matches the weighted sum-rate of the optimal rate region, if either of
the following conditions hold:

(1) CuaH(Y) — )\H(Z)Hp(x) = H(Y)—AH(Z) and Y is independent of Z,
(1) € [H(Y) — )\H(Z)Hp(x) =HY|X)-\H(Z|X).

Further if condition (7) holds for some A\; > 1, then it will also hold for 1 < X\ < Ay;
and if condition (iz) holds for some A9 > 1, then it will also hold for A > As.

Remark:

A relatively easier condition to verify is the convexity of H(Y) — AH(Z) with respect
to the distribution of X.

Brees
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Supplementary slides to Kérner-Marton Problem: Application to
binary alphabets GF(2)

Notation: We will parameterize the space of distributions over pairs of binary
alphabets, p(z,y) as follows:
PX=0)=z,PY=0X=0)=c,P(Y =1X=1)=d.
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Supplementary slides to Kérner-Marton Problem: Application to
binary alphabets GF(2)

Notation: We will parameterize the space of distributions over pairs of binary
alphabets, p(z,y) as follows:

PX=0)=z,PY=0X=0)=c,P(Y =1X=1)=d.

Proposition 3.1: Optimality of Slepian-Wolf region

The optimal weighted sum-rate of the capacity region is given by the Slepian Wolf
region if any of the following conditions hold:

(i) For any A, if (c— 3)(d —4) <0, or

» c—d\ 2 1 1

(i1) A > (m) ,c#d,and (c—3)(d—3)>0.
where d = 1 — d.
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Supplementary slides to Kérner-Marton Problem: Application to
binary alphabets GF(2)

Notation: We will parameterize the space of distributions over pairs of binary
alphabets, p(z,y) as follows:
PX=0)=z,PY=0X=0)=c,P(Y =1X=1)=d.

Proposition 3.1: Optimality of Slepian-Wolf region

The optimal weighted sum-rate of the capacity region is given by the Slepian Wolf
region if any of the following conditions hold:
(i) For any A, if (c— 3)(d —4) <0, or
» c—d\ 2 1 1
(i1) A > (m) ,c#d,and (c—3)(d—3)>0.

where d =1 — d.

Remarks:

(7) The condition (7) above is already known and stated as exercise 16.23 page 390
of Csiszar and Korner’s book. One can verify that that H(Z) > H(Y) is
equivalent to (¢ — 3)(d — 3) < 0.

(17) Note that an equivalent proposition can also be stated for the alternate
parameterization: P(Y =0) =y, P(X =0]Y =0) =& P(X =1]Y = 1) = d. L@
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Supplementary slides to modulo sum problem: Application to
binary alphabets GF(2)

Proposition 3.2: Optimality of Kérner-Marton region

—_0) — _ —0) — _ — 1) — _ _ Vdd
Let P(X =0)=2z,P(Y =0/X =0)=c¢,P(Y =1|X =1) = d where z = Vi T
The optimal weighted sum-rate of the capacity region is given by the Koérner-Marton

region, i.e. using linear codes, if any of the following conditions hold:
(i) For any A, if ¢ =d, or
(i) 1< A< A1, c#d, and (¢ — 3)(d — 3) > 0, where A; is the larger root of the
quadratic equation

M(e—d)? + X2(c—d)(c—d) — 4dd(c — &)%) + (c — d)* = 0.

where d=1—d,éc=1—c.
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Supplementary slides to modulo sum problem: Application to
binary alphabets GF(2)

Proposition 3.2: Optimality of Kérner-Marton region

—_0) — _ —0) — _ — 1) — _ _ Vdd
Let P(X =0)=2z,P(Y =0/X =0)=c¢,P(Y =1|X =1) = d where z = Vi T
The optimal weighted sum-rate of the capacity region is given by the Koérner-Marton

region, i.e. using linear codes, if any of the following conditions hold:
(i) For any A, if ¢ =d, or
(i) 1< A< A1, c#d, and (¢ — 3)(d — 3) > 0, where A; is the larger root of the
quadratic equation

M(e—d)? + X2(c—d)(c—d) — 4dd(c — &)%) + (c — d)* = 0.

where d=1—d,éc=1—c.

Remarks:
) 1y 1 _ _ Vdd ; - i
(i) Aslong as (c—35)(d—35)>0and z = NN the optimal sum-rate will be

given by the Korner-Marton region, i.e. using linear codes.
(77) An equivalent Proposition can also be stated for the alternate parameterizatio%

A

P(Y=0)=y,P(X=0Y =0)=¢,P(X =1]Y = 1) =d. E. S
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Supplementary slides to modulo sum problem: to higher alphabet
fields

Example 1

For GF(3), one 1nstance of p(x,y) satisfying that Z is independent of Y and
H(Y) -

CuaHY) — H(Z) is given by the following distribution:

v I pwy =

0.08 0.06 0.18
p(z,y) = |0.08 0.18 0.06
0.24 0.06 0.06

WANG Yannan Non-convex Functionals in IT June 2021 7/9



Supplementary slides to modulo sum problem: to higher alphabet
fields

Example 1

For GF(3), one 1nstance of p(x,y) satisfying that Z is independent of Y and
CunH(Y) - H(Z)] (@) = H(Y)— H(Z) is given by the following distribution:

0.08 0.06 0.18
p(z,y) = |0.08 0.18 0.06
0.24 0.06 0.06

Example 2

One instance of p(z,y) satisfying €,y [H(Y) — H(Z)]|
given by the following distribution:

o = HY|X) = H(Z|X) is

0.02 0.02 048
p(xz,y) = [0.02 0.06 0.16
0.06 0.02 0.16
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Supplementary slides to Log-convexity of Fisher Information:
Proof for a = 2

Expanding what we want to show yields

1 2 2
2 — a?)v?v? + (4 — 20)v 0903 — = 1—a2v?+f 11—« ’U%’Ug—i—*()él—oé vilvg > 0.
1 9 3 3

9
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Supplementary slides to Log-convexity of Fisher Information:
Proof for a = 2

Expanding what we want to show yields

1 2 2
(2 — )02 + (4 — 20)v V903 — §(1 — )%l + §(1 —a)vivs + ga(l — a)vivg) > 0.

In integration by parts formula, choosing k = 3, ¢ = v} and that k = 2, ¢ = v} gives

(vivz + vou] + 3vivd) = 0

(9 + 5vive) = 0.
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Supplementary slides to Log-convexity of Fisher Information:
Proof for a = 2

Expanding what we want to show yields

1 2 2
(2 — )02 + (4 — 20)v V903 — §(1 — )%l + §(1 —a)vivs + ga(l — a)vivg) > 0.

In integration by parts formula, choosing k = 3, ¢ = v} and that k = 2, ¢ = v} gives

(vivz + vou] + 3vivd) = 0

(V9 + Butvg) = 0.

Proving above inequality for some o € R is equivalent to proving the following
inequality

1 2 2
(2 = )3 + (4 — 20)v V903 — 5(1 —a)?b + g(l — a)vivg + ga(l — a)vivy)

+5<U%’U3 + vgvi" + 31}%1}%) + ’y(U? + 51)1"212) >0
for some «, 3,7 € R.

We successively choose a = 2, 8 = %, and v = 1% Above reduces to ﬁ(vﬁ > 0.
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Supplementary slides to Log-convexity of fisher information Open
Problem: Generalization of convexity of the output entropy

e Consider a channel given by
Y™ =AX"+ 2™,
where A is an m x n (channel-gain) matrix, X" is the input, and

Z™(~ N(0,I,)) is the additive Gaussian noise.

e What are the flows in the space of input distributions, say characterized by X}*,
where h(X]") is linear in ¢ and h(Y;™) is convex in t?

e An interesting such flow exists in the space of Gaussian vectors [Kubo-And6
1980]. Let X7 ~ N(0, Ky) and X' ~ N (0, K1). Define

1 _1 1Nt 1
K, = Kg <K02K1K02> Ky,

and X' ~ N(0,K;). Then h(X}) is linear in t and h(Y,™) = log |AK; AT + I| is
convex in t.

@ Question: Does similar flows exist in a more general setting, i.e. outside the
space of Gaussian vectors and more generally for larger class of channels? @

PErrey
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