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I. INTRODUCTION

The optimality of certain achievable rate regions for communication settings in multiuser information theory, such as Marton’s
region for the two-receiver broadcast channel, can be verified by establishing that product distributions are the global maximizers
of a corresponding non-convex functional on product spaces, [1]. A functional satisfying the above property is said to satisfy
global tensorization. As stated in [2] a curious connection has been repeatedly observed between functionals that satisfy global
tensorization and those that satisfy a so-called local tensorization property. One way to reconcile this apparent relationship is
to determine if all the local maximizers of non-convex functionals that satisfy global tensorization have the property that all
local maximizers are also product distributions.

On a related note, information inequalities concerning non-convex functionals have also been established [3] by determining
all the local maximizers. Additionally, certain non-convex functionals, such as the one arising in the capacity region computation
of the vector Gaussian channel [4] is shown to have a unique local maximum. Inspired by these observations, we seek to
understand the geometric structure of certain information functionals and determine its set of local extremizers. The family
considered in this paper can be considered as an elementary but non-trivial sub-class of functionals. The results in this paper
extend the celebrated convexity result, sometimes referred to as Mrs. Gerber’s lemma, of Wyner and Ziv to broader family of
channels.

This paper addresses a particular family of non-convex optimization problems that arises often-times in information theory.
Given a conditional distribution WY |X , a reference distribution PX , and a non-negative parameter λ we will be investigating
non-convex optimization problems of form

min
ΦX
{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} , (1)

and see if these problems can be reparameterized into convex optimization problems. In the above expression D(ΦX‖PX)
denotes the relative entropy, and the logarithms are assumed to be with respect to base e. If such a reparameterization exists,
then any local minimizer would also be a global minimizer (similar to the observation in the MIMO Gaussian broadcast
channel). The main idea is to choose a parameterization of ΦX so that D(ΦX‖PX) is linear in the parameter and determine
whether the output relative entropy, D((WΦ)Y ‖(WP )Y ), is concave.

A. Motivation

Consider the following optimization scenarios originating in multiuser information theory.
(i) In the Ahlswede-Korner source coding problem [5], to compute the minimal weight sum-rate, one is faced with the

following optimization problem: Given a conditional distribution WY |X and an input distribution ΦX , one seeks to
compute the value of the following optimization problem (parameterized by λ, λ ≥ 0):

min
U :U→X→Y

H(Y |U) + λI(U ;X).

(ii) In the degraded broadcast channel, to compute the maximum weighted sum-rate RZ + λRY , one seeks to compute the
value of the following optimization problem (parameterized by λ, λ ≤ 1):

max
U,X:U→X→Y→Z

I(U ;Z) + λI(X;Y |U).

Both of these problems result in the computation of the lower convex envelope with respect to ΦX for the functionals
H(Y ) − λH(X) and H(Z) − λH(Y ), respectively. Observe that in the latter case, the channel WZ|Y is fixed, and in the
former case the conditional distribution WY |X is fixed. Note that, when λ = 0 both functionals are concave in ΦX and when
λ = 1 both functionals are convex in ΦX . For λ ∈ (0, 1) (the interesting regime), the function is not necessarily convex nor
concave. Therefore computation of the lower convex envelope does not reduce to a convex optimization problem and apriori
the functionals may have multiple local minimizers. Therefore it is natural to ask if there is a subset of the above family of
problems for which under a suitable reparameterization, the problem reduces to a convex optimization problem.

Characterization of the lower convex envelope can be done via Fenchel duality by computing its supporting hyperplanes.
To this end we seek to compute the minimum of

G(PX) := min
ΦX
{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )}



= min
ΦX

{
HΦ(Y )− λHΦ(X)−

∑
x

axΦX(x)

}
,

where (WΦ)Y denotes the distribution on Y induced by the input distribution ΦX and the channel WY |X , HΦ(X) denotes
the Shannon entropy of X when X ∼ ΦX , and ax =

∑
yW (y|x) log

(WP )y
P (x)λ

. Thus G(PX) denotes the Fenchel dual for the

convex envelope of H(Y ) − H(X), with ax =
∑
yW (y|x) log

(WP )y
P (x)λ

being the dual variables. This is one way in which
optimization problems of the type described in (1) arise.

Another motivation for such optimization problems lie in determining the optimal constants for Strong-Data-Processing
inequalities and in turn to determining limiting hypercontractivity parameters [6]. It has been shown in [7] that given pX ,WY |X ,
the inequality

I(U ;Y )− ηI(U ;X) ≤ 0,

holds for all U : U → X → Y is Markov, if and only if, the inequality

min
ΦX
{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} ≥ 0

holds. Note that the range of η depends on PX . One can also define a similar η that holds for all input distributions (and thus
depends only on the channel) to be

ηW := min{η : I(U ;Y )− ηI(U ;X) ≤ 0, ∀pUX : U → X → Y is Markov}

or equivalently (see Exercise in [8])

ηW := min{η : λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y ) ≥ 0, ∀qX , pX}.

It has recently been shown [9] that for any WY |X it suffices to consider PX having support on two alphabets and ΦX � PX
to compute ηW .

Remark 1. In light of this result, the case of X being binary takes particular significance while considering the family of
optimization problems of the form

min
ΦX
{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} , (2)

min
PX ,ΦX

{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )} . (3)

B. A convexity result due to Wyner and Ziv

While trying to compute the superposition coding region of a degraded binary-symmetric broadcast channel (see item (ii)
in the Motivation), Wyner and Ziv showed that for any α ∈ [0, 1

2 ], the function H2(α ∗H−1
2 (u)) is convex in u, where H2 :

[0, 1
2 ] 7→ [0, log 2] is binary entropy function given by H2(x) = −x log2(x)− (1−x) log2(1−x) and H−1

2 : [0, log 2] 7→ [0, 1
2 ]

is its inverse. Here a ∗ b = a(1− b) + b(1− a) denotes a two-point convolution.
We can interpret this result alternatively as the following. Let WY |X be the binary symmetric channel with crossover

probability α. Let pX be the uniform distribution and parameterize ΦX,t(0) = H−1
2 (t). Now observe that under this

parameterization, D(ΦX,t‖PX) = log 2− t is linear in t, and D((WΦX,t)Y ‖(WP )Y ) = log 2−H2(α ∗H−1
2 (t)) is concave

in t. Therefore the function

{λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y )}

is convex in t, reducing the computation of (1) to a convex optimization problem. One way to interpret this is, ΦX,t determines
a path along the binary simplex such that D(ΦX,t‖PX) is linear in t and D((WΦX,t)Y ‖(WP )Y ) is concave in t.

Thus the question we seek to address is: given any channel WY |X , a reference distribution PX , and an initial distribution
ΦX , is it possible to parameterize the path from ΦX to PX according to ΦX,t, where ΦX,0 = ΦX and ΦX,1 = PX , with
the property that D(ΦX,t‖PX) is linear in t and D((WΦX,t)Y ‖(WP )Y ) is concave in t. We will answer this question for
channels with binary inputs, and partially for channels with higher input cardinalities. As stated in Remark 1, the case of
binary inputs (and outputs of arbitrary cardinality) is particularly useful when computing ηW for a channel with arbitrary input
alphabet.



II. CHANNELS WITH BINARY INPUTS AND BINARY OUTPUTS

Let us denote a binary-input binary-output channel as

WY |X =

[
a b
ā b̄

]
. (4)

Here the matrix entry Wij = P (Y = i|X = j). Let us denote ΦX,t = (φ(t), 1 − φ(t)) and PX = (p, 1 − p) to characterize
the parameterized path and the reference distribution. Further we denote, for a, b ∈ [0, 1],

D2(a‖b) = a log
a

b
+ (1− a) log

1− a
1− b

to be the relative entropy between the two two-point distributions characterized by (a, 1 − a) and (b, 1 − b) respectively. We
also use φ̄ to represent 1− φ for brevity. We also assume that the reference measure satisfies p > 0; otherwise D2(φ‖0) =∞
for all φ 6= 0.

Note that D2(φ(t)‖p) is monotonically increasing (resp. decreasing) when φ(t) ≥ p (resp. φ(t) ≤ p). Hence if we enforce
the linear dependence of input divergence on t, we obtain

d2

dt2
D2(φ‖p) = φ′′ log

φp̄

φ̄p
+
φ′2

φφ̄
= 0. (5)

Imposing the boundary conditions φ(0) = 1 (resp. φ(0) = 1) and φ(1) = p, then φ(t) can be uniquely determined (due to the
monotonicity of D2(φ(t)‖p)).

Remark 2. For an arbitrary reference PX , this reparameterization φ(t) replaces the parameterization H−1
2 (t) employed by

Wyner and Ziv.

Let (WP )Y = (ap+ bp̄, āp+ b̄p̄) and (WΦ)Y = (aφ+ bφ̄, āφ+ b̄φ̄). We define q , ap+ bp̄, and ψ , aφ+ bφ̄. Now we
can calculate the second order derivative d2

dt2D2(ψ‖q) as the following:

d2

dt2
D2(ψ‖q) = ψ′′ log

ψq̄

ψ̄q
+
ψ′2

ψψ̄

= −(a− b)φ
′2

φφ̄
log

ψq̄

ψ̄q
/ log

φp̄

φ̄p
+ (a− b)2 φ

′2

ψψ̄

(6)

In the second step we used Equation (5). Suppose φ′ 6= 0, then concavity of D((WΦX,t)Y ‖(WP )Y ) is equivalent to
d2

dt2D2(ψ‖q) ≤ 0. This, in turn, is equivalent to

f(φ; p) := (a− b)2φφ̄ log
φp̄

φ̄p
− (a− b)ψψ̄ log

ψq̄

ψ̄q

{
≥ 0, φ ≤ p;
≤ 0, φ ≥ p;

(7)

since log φ
p ≤ 0 (resp. ≥ 0) when φ ≤ p (resp. φ ≥ p).

Specifically, the condition (7) now can be expressed as f(φ; p) ≥ 0 for φ ∈ [0, p] and f(φ; p) ≤ 0 for φ ∈ [p, 1]. We remark
that this condition now does not depend on t. One may calculate the derivatives of f(φ; p) w.r.t. φ as the following.

d

dφ
f(φ; p) = (a− b)2(1− 2φ) log

φp̄

φ̄p
− (a− b)2(1− 2ψ) log

ψq̄

ψ̄q

d2

dφ2
f(φ; p) = (a− b)2[−2 log

φp̄

φ̄p
+

(1− 2φ)

φφ̄
]− (a− b)3[−2 log

ψq̄

ψ̄q
+

(1− 2ψ)

ψψ̄
]

d3

dφ3
f(φ; p) = − (a− b)2

φ2φ̄2
+

(a− b)4

ψ2ψ̄2
.

(8)

We will show that d2

dt2 f(φ) is decreasing w.r.t. φ in the following lemma.

Lemma 1. The second-order derivative d2

dφ2 f(φ; p) is monotonically decreasing in φ ∈ [0, 1].

Proof. Note that d3

dφ3 f(φ; p) ≤ 0 is equivalent to ψ2ψ̄2 ≥ (a− b)2φ2φ̄2 or

(ψψ̄ + (a− b)φφ̄)(ψψ̄ − (a− b)φφ̄) ≥ 0.



When 0 ≤ b ≤ a ≤ 1, we have ψψ̄ + (a− b)φφ̄ ≥ 0. Hence we only need to argue ψψ̄ − (a− b)φφ̄ ≥ 0. Note we have

ψψ̄ − (a− b)φφ̄ = (b+ (a− b)φ)(b̄+ (b− a)φ)− (a− b)φ(1− φ)

= (a− b)(ā+ b)φ2 − 2b(a− b)φ+ bb̄

= (a− b)(ā+ b)
(
φ− b

ā+ b

)2

+
āb

ā+ b
≥ 0.

Similarly, when 0 ≤ a ≤ b ≤ 1, we have (ψψ̄ − (a− b)φφ̄) ≥ 0. Hence we need to check

ψψ̄ + (a− b)φφ̄ = (b− a)(a+ b̄)
(
φ− b̄

a+ b̄

)2

+
ab̄

a+ b̄
≥ 0.

This proves the required inequality.

Theorem 1. Consider a binary channel represented as Equation (4), with a 6= b and a, b ∈ (0, 1). Assume that the input
distribution is reparametrized according to Equation (5), then D((WΦX,t)Y ‖(WP )Y ) = D2(ψ‖q) is concave w.r.t. t under
such a reparametrization, if and only if p is equal to

p∗ :=

√
bb̄√

bb̄+
√
aā
.

Proof. We will first show that p = p∗ is necessary. Calculate the Taylor expansion of f(φ; p) at φ = p, and observe that
f(p; p) = d

dφf(p; p) = 0, we have f(p+ ε; p) = ε2

2
d2

dφ2 f(p; p) +O(ε3). Hence to satisfy the condition in (7). i.e. for

f(φ; p)

{
≥ 0, φ ≤ p;
≤ 0, φ ≥ p;

we must have d2

dφ2 f(p; p) = 0. By Equation (8), this is equivalent to

(a− b)1− 2q

qq̄
− 1− 2p

pp̄
= 0.

The above equation is quadratic in p and the only feasible solution is p∗. Hence p = p∗ is necessary.
To show that it is sufficient, assume p = p∗. From Lemma 1, we have that d2

dφ2 f(φ; p∗) is decreasing. Since d2

dφ2 f(p∗; p∗) = 0,
then d2

dφ2 f(φ; p∗) ≤ 0 for φ ≥ p∗. This implies that d
dφf(φ; p∗) is decreasing for φ ≥ p∗. As d

dφf(p∗; p∗) = 0, we have
d
dφf(φ; p∗) ≤ 0 for φ ≥ p∗. Consequently f(φ; p∗) is decreasing for φ ≥ p∗. Finally, as f(p∗; p∗) = 0, we obtain f(φ; p∗) ≤ 0
when φ ≥ p∗. The analysis of φ ≤ p∗ is similar. This completes the proof.

Remark 3. This theorem implies that for the binary symmetric channel, the only PX for which we have the concavity of
D((WΦX,t)Y ‖(WP )Y ) with respect to t is the uniform distribution.

When p 6= p∗, the next proposition establishes a one-sided concavity result for the output relative entropy.

Proposition 1. In the same setting as Theorem 1, if p > p∗, D2(ψ‖q) is concave for all φ ≥ p. Similarly, if p < p∗, D2(ψ‖q)
is concave for all φ ≤ p.

Proof. We will prove the claim when p > p∗. The case where p < p∗ is analogous. We will show that d2

dφ2 f(p; p) is decreasing
w.r.t. p first. By Equation (8), we have

g(p) :=
d2

dφ2
f(p; p) = (a− b)2 1− 2p

pp̄
− (a− b)3 1− 2q

qq̄
.

Since q is a function of p, we deduce that

g(p) = (a− b)2
(1

p
− 1

p̄

)
− (a− b)3

(1

q
− 1

q̄

)
d

dp
g(p) = (a− b)2

(
− 1

p2
− 1

p̄2

)
− (a− b)4

(
− 1

q2
− 1

q̄2

)
= −(a− b)2 (2(a− b)bp+ b2)

p2q2
− (a− b)2 (2(a− b)āp̄+ ā2)

p̄2q̄2
(9)

= −(b− a)2 (2(b− a)b̄p+ b̄2)

p2q̄2
− (b− a)2 (2(b− a)ap̄+ a2)

p̄2q2
(10)



Therefore, irrespective of the sign of a − b (see (9) or (10)) , we have d
dpg(p) ≤ 0. Since g(p∗) = d2

dφ2 f(p∗; p∗) = 0 and
g(p) is decreasing w.r.t p, g(p) ≤ 0 when p ≥ p∗. Moreover, by Lemma 1, we have d2

dφ2 f(φ; p) is decreasing w.r.t φ and hence
d2

dφ2 f(φ; p) ≤ 0 for all φ ≥ p. Since f(p; p) = 0 and d
dφf(p; p) = 0, we have f(φ; p) ≤ 0 for all φ ≥ p. This implies D(ψ‖q)

is concave with t when φ ≥ p.

III. CONCAVITY OVER A 2-TO-n CHANNEL

We now generalize our result from binary outputs to 2-to-n channels for arbitrary finite output dimension n. To do so, we
follow the same approach to find the p such that when we make the input divergence linear in t, the output divergence becomes
concave in t. The key different is that one is unable to explicitly identify the p∗, We denote the channel as

W (y|x) =


a1 b1
a2 b2
...

...
an bn

 (11)

Here the matrix entry Wij = P (Y = i|X = j). The differential equation that makes the input divergence D2(φ‖p) linear is the
same as the binary case, as is shown in Equation (5). However, the expression for the output divergence D((WΦX,t)Y ‖(WP )Y )
is different. Define qi = aip+ bip̄ and ψi = aiφ+ biφ̄. Denote D((WΦX,t)Y ‖(WP )Y ) = D(ψ‖q). We have

D(ψ‖q) =

n∑
i=1

ψi log
ψi
qi

d2

dt2
D(ψ‖q) =

n∑
i=1

ψ′′i log
ψi
qi

+
ψ′2i
ψi

=

n∑
i=1

(
(ai − bi)φ′′ log

ψi
qi

+
(ai − bi)2φ′2

ψi

)

=

n∑
i=1

(
−(ai − bi)

φ′2

φφ̄
log

ψi
qi

(
log

φp̄

φ̄p

)−1

+
(ai − bi)2φ′2

ψi

)
.

(12)

Here we used Equation (5) in the final step. Requiring, the output relative entropy to be concave, i.e. the second-order
derivative to be negative, is then equivalent to

f(φ; p) :=

n∑
i=1

(
−(ai − bi) log

ψi
qi

+ (ai − bi)2φφ̄

ψi
log

φp̄

φ̄p

) {
≥ 0, 0 ≤ φ ≤ p;
≤ 0, p ≤ φ ≤ 1.

Taking derivatives of f(φ; p) w.r.t. φ, we have

d

dφ
f(φ; p) = log

φp̄

φ̄p

∑ (ai − bi)2(−aiφ2 + biφ̄
2)

(aiφ+ biφ̄)2

= log
φp̄

φ̄p

∑ (ai − bi)(−a2
iφ

2 + aibi(φ
2 + φ̄2)− b2i φ̄2)

(aiφ+ biφ̄)2

= log
φp̄

φ̄p

∑ (ai − bi)(−a2
iφ

2 + aibi(1− 2φφ̄)− b2i φ̄2)

(aiφ+ biφ̄)2

= log
φp̄

φ̄p

∑ (ai − bi)(−(aiφ+ biφ̄)2 + aibi)

(aiφ+ biφ̄)2

(a)
= log

φp̄

φ̄p

∑ aibi(ai − bi)
(aiφ+ biφ̄)2

.

The second derivative can be expressed in terms of the first derivative according to

d2

dφ2
f(φ; p) =

1

φφ̄

∑ aibi(ai − bi)
(aiφ+ biφ̄)2

− 2 log
φp̄

φ̄p

∑ (ai − bi)2aibi
(aiφ+ biφ̄)3

=
1

φφ̄

(
d

dφ
f(φ; p)

)(
log

φp̄

φ̄p

)−1

− 2 log
φp̄

φ̄p

∑ (ai − bi)2aibi
(aiφ+ biφ̄)3

.

(13)



Finally the third derivative can be expressed as

d3

dφ3
f(φ; p) =

(
1

φ̄2
− 1

φ2

)∑ aibi(ai − bi)
(aiφ+ biφ̄)2

+ 6 log
φp̄

φ̄p

∑ (ai − bi)3aibi
(aiφ+ biφ̄)4

− 4

φφ̄

∑ aibi(ai − bi)2

(aiφ+ biφ̄)3
.

We can now generalize Theorem 1 to 2-to-n channels.

Theorem 2. For a 2-to-n channel represented as Equation (11), if a 6= b, and we reparametrize the input distribution according
to Equation (5), then of D((WΦX,t)Y ‖(WP )Y ) = D(ψ‖q) is concave w.r.t. t under such reparametrization, if and only if
p = p∗ where p∗ is the unique solution to

n∑
i=1

(ai − bi)aibi
(pai + p̄bi)2

= 0. (14)

Proof. Let g(p) :=
∑n
i=1

(ai−bi)aibi
(aip+bip̄)2

= 0. Observe that g(p) is decreasing since

d

dp
g(p) = −

n∑
i=1

2(ai − bi)2aibi
(aip+ bip̄)3

≤ 0.

Since g(0) =
∑n
i=1

(ai−bi)2
bi

≥ 0, g(1) = −
∑n
i=1

(ai−bi)2
ai

≤ 0, we conclude that g(p) has a unique zero over [0, 1] so long
as a 6= b.

Since f(p; p) = d
dφf(p; p) = 0 for any p, by considering the Taylor expansion at φ = p we see that the condition

f(φ; p)

{
≥ 0, φ ≤ p;
≤ 0, φ ≥ p;

forces d2

dφ2 f(p; p) = 0. Therefore from Equation (13), require g(p) = 0 or that p = p∗ is necessary.
We now argue that the above condition is also sufficient. By Equation(13), we have f(p∗; p∗) = d

dφf(p∗; p∗) =
d2

dφ2 f(p∗; p∗) = 0, and
d3

dφ3
f(p∗; p∗) = − 4

p∗p̄∗

∑ (ai − bi)2aibi
(aip∗ + bip̄∗)3

≤ 0. (15)

Using Lemma 2 completes the proof.

Lemma 2. Consider a real function f(φ) : (0, 1) → R and assume f ∈ C4, i.e. four times differentiable,and satisfies the
following properties:

1) f(p) = f ′(p) = f ′′(p) = 0, and f ′′′(p) < 0 for some p ∈ (0, 1);
2) f ′′(φ) = a(φ) · f ′(φ) + b(φ), where a(φ) > 0 and b(φ) ≤ 0 for φ ∈ (p, 1); while a(φ) < 0 and b(φ) ≥ 0 for φ ∈ (0, p).

Then we have f(φ) ≤ 0 for φ ∈ (p, 1). Similarly, f(φ) ≥ 0 for φ ∈ (0, p).

Proof. From the Taylor expansion at p, we have f ′(φ) = f ′′′(p)
2 (φ− p)2 +O((φ− p)3). Since f ′′′(p) is strictly less than zero,

then there must exist some positive constant q ∈ (p, 1), such that for p < φ ≤ q, we have f ′(φ) < 0. Suppose there is some
s ∈ (q, 1), such that f ′(s) > 0. We then deduce that the minimum of f ′(φ) over φ ∈ [p, s] must be attained by some interior
minimizer φ0 ∈ (p, s), and f ′(φ0) < 0. Also we have f ′′(φ0) = 0 by local optimality conditions for interior minimizers. Since
a(φ) > 0 and b(φ) ≤ 0 for φ ∈ (p, 1), we obtain

0 = f ′′(φ0) = a(φ0) · f ′(φ0) + b(φ0) ≤ a(φ0) · f ′(φ0) < 0.

Contradiction! Hence such an s cannot exist. This guarantees f ′(φ) ≤ 0 for φ ∈ (p, 1) and therefore f(φ) ≤ 0 for φ ∈ (p, 1).
The other side can be proved by similar arguments.

We then give an alternate proof of the sufficiency part in Theorem 2 as the following, without needing the above Lemma.

Alternate Proof of sufficiency of p = p∗. We note that d
dφf(φ; p∗) = g(φ) log φp̄∗

φ̄p∗
. Here g(φ) :=

∑n
i=1

(ai−bi)aibi
(aip+bip̄)2

as is defined
in the previous proof. Then we know that g(φ) is decreasing over φ ∈ [0, 1], and hence g(φ) ≤ 0 for φ ≥ p∗. Also note that
log φp̄∗

φ̄p∗
≥ 0 for φ ≥ p∗. Then we have d

dφf(φ; p∗) ≤ 0 for φ ≥ p∗, which further guarantees f(φ; p∗) ≤ 0 for φ ≥ p∗. The
other side (φ ≤ p∗) can be analyzed analogously.



Proposition 2. In the same setting as Theorem 2, if p > p∗, D(ψ‖q) is concave for all φ ≥ p. Similarly, if p < p∗, D(ψ‖q)
is concave for all φ ≤ p.

Proof. Note that d
dφf(φ; p) = ln φp̄

φ̄p
· g(p). Consider the case p ≤ p∗. When φ ≤ p, we have g(p) ≥ 0, ln φp̄

φ̄p
≤ 0, hence

d
dφf(φ; p) ≤ 0. But f(p; p) = 0, so f(φ; p) ≥ 0 in [0, p]. The other side can be proved similarly.

IV. CONCAVITY OVER AN m-TO-n CHANNEL

When the cardinality of the input alphabet is increased from binary we lose the uniqueness of the path from a given qX to
the reference pX . In the following lemma, we show that there are multiple paths that pass through qX (but not necessarily
through pX ) which turn the optimization problem in (1) into a convex optimization problem. This is done by identifying each
trajectory as a corresponding path between two inputs for a related channel with binary inputs.

Given a m-to-n channel WY |X , where Wij = P (Y = i|X = j), and fix any two input co-ordinates, say the first two. Let
PX = (p1, ..., pm) be an arbitrary reference distribution. Let ΦX,t = (φ1(t), φ2(t), p3, .., pm) denote a path along the input
distributions. Note that φ1(t) + φ2(t) = p1 + p2. Let Φ̂(t) =

(
φ1(t)

φ1(t)+φ2(t) ,
φ2(t)

φ1(t)+φ2(t)

)
and P̂ =

(
p1

p1+p2
, p2
p1+p2

)
. Define a

binary input channel ŴY |X̂ (observe that this depends on on WY |X and the reference measure pX ) according to

ai = Ŵ (Y = i|X = 1) = Wi1(p1 + p2) +

m∑
j=3

Wijpj

bi = Ŵ (Y = i|X = 2) = Wi2(p1 + p2) +

m∑
j=3

Wijpj .

Lemma 3. The following hold:

D(ΦX,t‖Px) = (p1 + p2)D(Φ̂(t)‖P̂ )

D((WΦ)Y ‖(WP )Y ) = D((Ŵ Φ̂)Y ‖(Ŵ P̂ )Y )

Proof. The first equality is immediate by direct substitution. For the second observe that

D((Ŵ Φ̂)Y ‖(Ŵ P̂ )Y ) =

(
n∑
i=1

ai
φ1(t)

φ1(t) + φ2(t)
+ bi

φ1(t)

φ1(t) + φ2(t)

)
log

aiφ1(t) + biφ2(t)

aip1 + bip2

=

n∑
i=1

Wi1φ1(t) +Wi2φ2(t) +

m∑
j=3

Wijpj

 log
Wi1φ1(t) +Wi2φ2(t) +

∑m
j=3Wijpj

Wi1p1 +Wi2p2 +
∑m
j=3Wijpj

= D((WΦ)Y ‖(WP )Y ).
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