Concavity of output relative entropy for channels with binary inputs

Devon Ding1 Ken Lau2 Chandra Nair2 Dustin Wang2

1Dept. of Computer Science and Engg., The Chinese University of Hong Kong
2Dept. of Information Engg., The Chinese University of Hong Kong

IEEE ISIT 2021
Motivation

This talk is motivated by the study of non-convex optimization problems in network information theory.
Motivation - 1 (Distributed Source Coding)

Let \((X^n, Y^n)\) be a sequence of discrete random variables that are generated i.i.d. according to \(P_{XY}\), denoted as 2-DMS, and the decoder would like to recover \(Y^n\).

\[
X^n \in \mathcal{X}^n \quad \quad \quad M_X \in [1 : 2^{nR_X}]
\]

\[
Y^n \in \mathcal{Y}^n \quad \quad \quad M_Y \in [1 : 2^{nR_Y}]
\]

Figure 1: Distributed Source Coding With One Helper
Motivation

Motivation - 1 (Distributed Source Coding)

Let \((X^n, Y^n)\) be a sequence of discrete random variables that are generated i.i.d. according to \(P_{XY}\), denoted as 2-DMS, and the decoder would like to recover \(Y^n\).

\[
X^n \in \mathcal{X}^n \rightarrow \text{Encoder 1} \rightarrow M_X \in [1 : 2^{\lfloor nR_X \rfloor}] \rightarrow \text{Decoder} \rightarrow \hat{Y}^n
\]

\[
Y^n \in \mathcal{Y}^n \rightarrow \text{Encoder 2} \rightarrow M_Y \in [1 : 2^{\lfloor nR_Y \rfloor}] \rightarrow \text{Decoder} \rightarrow \hat{Y}^n
\]

Figure 1: Distributed Source Coding With One Helper

A rate pair \((R_X, R_Y)\) is achievable if there exists a sequence of \((n, R_X, R_Y)\)-codes such that the \(\Pr(\hat{Y}^n \neq Y^n) \rightarrow 0\) as \(n \rightarrow \infty\).

Source Coding Problem [Ahlswede-Körner, ’75]

What rate pairs \((R_X, R_Y)\) are achievable under the above setting?
Given a 2-DMS P_{XY}, the optimal rate region is given by,

$$R_X \geq I(U;X)$$

$$R_Y \geq H(Y|U),$$

for some distribution $P_{U|X}$ such that $U \rightarrow X \rightarrow Y$ forms a Markov chain. Moreover, it suffices to consider $|U| \leq |X| + 1$.
Motivation - 1 (Distributed Source Coding)

Source Coding Problem - Optimal Rate Region [Ahlswede-Körner, ’75]
Given a 2-DMS P_{XY}, the optimal rate region is given by,

$$R_X \geq I(U; X)$$
$$R_Y \geq H(Y|U),$$

for some distribution $P_{U|X}$ such that $U \rightarrow X \rightarrow Y$ forms a Markov chain. Moreover, it suffices to consider $|U| \leq |X| + 1$.

Evaluation of the region: using weighted sum-rates
The minimum λ-sum rate $\lambda R_X + R_Y$ is,

$$\min_{P_{U|X}} H(Y|U) + \lambda I(U; X)$$

$$= \lambda H(X) - \max_{P_{U|X}} \{ \lambda H(X|U) - H(Y|U) \}$$

$$= \lambda H(X) - \mathcal{C}[\lambda H(X) - H(Y)](P_X).$$

Non-trivial regime: $\lambda \in (0, 1)$.
The above optimization problem is a non-convex optimization problem in general.
Define $f(\Phi X) := \lambda H(X) - H(Y)$.
$\mathcal{C}[f]$ is the upper concave envelope of the function f.

Upper Concave Envelope

$$
\mathcal{C}_{\Phi X}[f] := \inf \{ g : g \text{ is concave w.r.t. } \Phi_X \text{ and } g(\Phi_X) \geq f(\Phi_X), \forall \Phi_X \}
$$
Define $f(\Phi_X) := \lambda H(X) - H(Y)$.
$\mathcal{C}[f]$ is the upper concave envelope of the function f.

Upper Concave Envelope

$$\mathcal{C}_{\Phi_X}[f] := \inf \{ g : g \text{ is concave w.r.t. } \Phi_X \text{ and } g(\Phi_X) \geq f(\Phi_X), \forall \Phi_X \}$$

From an optimization perspective

- Computing the concave envelope is not easy (in general)
- Essentially the difficulty can be translated into that of computing the dual function
Motivation - 1 (Distributed Source Coding)

Upper Concave Envelope and Duality (Fenchel)

Define \(f(\Phi X) := \lambda H(X) - H(Y) \).
\(\mathcal{C}[f] \) is the upper concave envelope of the function \(f \).

Upper Concave Envelope

\[
\mathcal{C}_{\Phi X}[f] := \inf \{ g : g \text{ is concave w.r.t. } \Phi X \text{ and } g(\Phi X) \geq f(\Phi X), \forall \Phi X \}
\]

Fenchel’s Dual Representation

Given \(d_X = (d_x, x \in \mathcal{X}) \) a real-valued vector of length \(|\mathcal{X}| \), the Fenchel-dual of the function is

\[
f^{\dagger}(d_X) := \sup_{\Phi X} \left\{ f(\Phi X) - \sum_{x \in \mathcal{X}} d_x \Phi_X(x) \right\}.
\]

The dual variables \(d_x \) define hyperplanes, and \(f^{\dagger}(d_X) \) is convex in \(d_X \).
Motivation - 1 (Distributed Source Coding)
Upper Concave Envelope and Duality (Fenchel)

Define \(f(\Phi_X) := \lambda H(X) - H(Y) \).
\(\mathcal{C}[f] \) is the upper concave envelope of the function \(f \).

Upper Concave Envelope

\[
\mathcal{C}_{\Phi_X}[f] := \inf \{ g : g \text{ is concave w.r.t. } \Phi_X \text{ and } g(\Phi_X) \geq f(\Phi_X), \forall \Phi_X \}
\]

Fenchel’s Dual Representation

Given \(d_X = (d_x, x \in \mathcal{X}) \) a real-valued vector of length \(|\mathcal{X}| \), the Fenchel-dual of the function is

\[
f^\dagger(d_X) := \sup_{\Phi_X} \left\{ f(\Phi_X) - \sum_{x \in \mathcal{X}} d_x \Phi_X(x) \right\}.
\]

\[
\mathcal{C}_{\Phi_X}[f](P_X) = \inf_{d_X} \left\{ f^\dagger(d_X) + \sum_{x \in \mathcal{X}} d_x P_X(x) \right\}
\]

The dual of the dual yields the upper concave envelope.
Simple Observation: Suffices to consider gradients (dual variables) at interior distributions P_X.

![Plot of Upper Concave Envelope](image-url)
Motivation - 1 (Distributed Source Coding)

Dual representation

\[f(\Phi_X) = \lambda H(\Phi_X) - H((W\Phi)_Y). \]

Let \(P_X \) be an interior distribution.

The gradient induced here, say \(d_X \), is given by

\[d_X = \left. \frac{\partial f(\Phi_X)}{\partial \Phi_X} \right|_{P_X} \]

\[= -\lambda \ln P_X + \sum_y W_{Y|X} \ln P_Y. \]
Motivation - 1 (Distributed Source Coding)

Dual representation

\[f(\Phi_X) = \lambda H(\Phi_X) - H((W\Phi)_Y). \]

Let \(P_X \) be an interior distribution.

The gradient induced here, say \(d_X \), is given by

\[d_X = \frac{\partial f(\Phi_X)}{\partial \Phi_X} \bigg|_{P_X} = -\lambda \ln P_X + \sum_y W_{Y|X} \ln P_Y. \]

\[f^\dagger(d_X) := \sup_{\Phi_X} \left\{ f(\Phi_X) - \sum_{x \in X} d_x \Phi_X(x) \right\} \]

Substituting the above \(d_X \) into \(f^\dagger \), we have,

\[f^\dagger(d_X) = -\inf_{\Phi_X} \{ \lambda D(\Phi_X||P_X) - D((W\Phi)_Y||(WP)_Y) \}. \]
[Ahlswede-Körner, ’74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

$$f_1(c) := \inf_{H(X) \geq c} H(Y)$$
Related Work

[Ahlswede-Körner, ’74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

$$f_1(c) := \inf_{H(X) \geq c} H(Y)$$

[Witsenhausen-Wyner, ’74] showed that given any discrete memoryless channel (DMC) $W_{Y|X}$ and an input distribution P_X, for any Markov chain $U \rightarrow X \rightarrow Y$ where U is discrete r.v., the function

$$f_2(c) := \inf_{H(X|U)=c} H(Y|U)$$

is convex in c.
Related Work

[Ahlswede-Körner, ’74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

$$f_1(c) := \inf_{H(X) \geq c} H(Y)$$

[Witsenhausen-Wyner, ’74] showed that given any discrete memoryless channel (DMC) $W_{Y|X}$ and an input distribution P_X, for any Markov chain $U \rightarrow X \rightarrow Y$ where U is discrete r.v., the function

$$f_2(c) := \inf_{H(X|U) = c} H(Y|U)$$

is convex in c.

They explicitly calculated the function $\inf_{H(X|U) = c} H(Y|U)$ for BSC, BEC and Z channels (essentially using Fenchel duality).
Related Work

[Ahlswede-Körner, ’74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

$$f_1(c) := \inf_{H(X) \geq c} H(Y)$$

[Witsenhausen-Wyner, ’74] showed that given any discrete memoryless channel (DMC) $W_{Y|X}$ and an input distribution P_X, for any Markov chain $U \rightarrow X \rightarrow Y$ where U is discrete r.v., the function

$$f_2(c) := \inf_{H(X|U) = c} H(Y|U)$$

is convex in c.

They explicitly calculated the function $\inf_{H(X|U) = c} H(Y|U)$ for BSC, BEC and Z channels (essentially using Fenchel duality).

This work: we are looking at (essentially) the same problem from an optimization perspective for arbitrary 2-to-n channels.
Motivation - 2

Given $\lambda \in (0, 1)$, $W_{Y|X}$, and μ_X.
View W as a Markov operator T, where for $f(Y)$ we have $Tf = E(f|X)$.
Define
\[
c_\lambda = \inf \{ c : E(\exp(T \ln f)) \leq \|f\|_\lambda e^c, \; \forall f(Y) > 0 \}.
\]
Also define
\[
m_\lambda := \inf_{\nu_X : \mu_X \ll \nu_X} \lambda D(\nu_X \| \mu_X) - D((W \nu)_Y \| (W \mu)_Y).
\]
Motivation - 2

Given $\lambda \in (0, 1)$, $W_{Y|X}$, and μ_X. View W as a Markov operator T, where for $f(Y)$ we have $Tf = \mathbb{E}(f|X)$. Define

$$c_\lambda = \inf \{ c : \mathbb{E}(\exp(T \ln f)) \leq \| f \|_{\lambda e^c}, \ \forall f(Y) > 0 \}.$$

Also define

$$m_\lambda := \inf_{\nu_X : \mu_X \ll \nu_X} \lambda D(\nu_X \| \mu_X) - D((W\nu)_Y \| (W\mu)_Y).$$

Theorem (Corollary of Ahlswede-Gacs ’76)

$m_\lambda = -c_\lambda$.

Related to strong data processing inequalities

Original Motivation: This is the simplest case of a similar functional appearing in the evaluation of Marton’s inner bound for broadcast channels.

Concavity of relative entropy

ISIT 2021 8 / 19
Given $\lambda \in (0, 1)$, $W_{Y|X}$, and μ_X. View W as a Markov operator T, where for $f(Y)$ we have $Tf = \mathbb{E}(f|X)$. Define

$$c_\lambda = \inf\{c : \mathbb{E}(\exp(T \ln f)) \leq \|f\|_\lambda e^c, \ \forall f(Y) > 0\}.$$

Also define

$$m_\lambda := \inf_{\nu_X : \mu_X \ll \nu_X} \lambda D(\nu_X || \mu_X) - D((W\nu)_Y || (W\mu)_Y).$$

Theorem (Corollary of Ahlswede-Gacs ’76)

$$m_\lambda = -c_\lambda.$$

- Related to strong data processing inequalities
- **Original Motivation:** This is the simplest case of a similar functional appearing in the evaluation of Marton’s inner bound for broadcast channels
Main Problem

Non-Convex Optimization Problem

\[
\min_{\Phi_X : \Phi_X \ll P_X} \{ \lambda D(\Phi_X \| P_X) - D((W \Phi)_Y \| (WP)_Y) \}
\]

- \(\lambda \in (0, 1) \)
- \(W_{Y|X} \): a discrete memoryless channel
- \(P_X \): a fixed “source/input” distribution
- \((WP)_Y \): channel induced output distribution
Main Problem

Non-Convex Optimization Problem

\[
\min_{\Phi_X: \Phi_X \ll P_X} \left\{ \lambda D(\Phi_X \| P_X) - D((W\Phi)_Y \| (WP)_Y) \right\}
\]

- \(\lambda \in (0, 1) \)
- \(W_{Y|X} \): a discrete memoryless channel
- \(P_X \): a fixed “source/input” distribution
- \((WP)_Y \): channel induced output distribution

- Both \(D(\Phi_X \| P_X) \) and \(D((W\Phi)_Y \| (WP)_Y) \) are convex in \(\Phi_X \).
 The difference is non-convex in general.
Main Problem

Non-Convex Optimization Problem

\[
\min_{\Phi_X: \Phi_X \ll P_X} \{ \lambda D(\Phi_X \| P_X) - D((W\Phi)_Y \| (WP)_Y) \}
\]

- \(\lambda \in (0, 1) \)
- \(W_{Y|X} \): a discrete memoryless channel
- \(P_X \): a fixed “source/input” distribution
- \((WP)_Y \): channel induced output distribution

- Both \(D(\Phi_X \| P_X) \) and \(D((W\Phi)_Y \| (WP)_Y) \) are convex in \(\Phi_X \). The difference is non-convex in general.
- **Idea:** We want to make \(D(\Phi_X \| P_X) \) linear in parameter \(t \) and hope that \(D((W\Phi)_Y \| (WP)_Y) \) becomes concave.
Main Problem

Non-Convex Optimization Problem

\[
\min_{\Phi_X: \Phi_X \ll P_X} \{ \lambda D(\Phi_X \| P_X) - D((W\Phi)_Y \| (WP)_Y) \}
\]

- \(\lambda \in (0, 1) \)
- \(W_{Y|X} \): a discrete memoryless channel
- \(P_X \): a fixed “source/input” distribution
- \((WP)_Y \): channel induced output distribution

- Both \(D(\Phi_X \| P_X) \) and \(D((W\Phi)_Y \| (WP)_Y) \) are convex in \(\Phi_X \).
 The difference is non-convex in general.

- **Idea:** We want to make \(D(\Phi_X \| P_X) \) linear in parameter \(t \) and hope that
 \(D((W\Phi)_Y \| (WP)_Y) \) becomes concave.

- This parameterization is motivated by [Vishnoi-Sra-Yildiz ’18] for positive
definite matrices where they reformulate the problem of computing the
Brascamp-Lieb constant into convex optimization.
Reparametrization

Given P_X, since the input space is binary, denote $\Phi_X(0) = \phi, P_X(0) = p$, we have

$$D(\Phi_X || P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\bar{\phi}}{\bar{p}}.$$

We divide the space into two intervals: $[0, p]$ and $[p, 1]$
Reparametrization

Given P_X, since the input space is binary, denote $\Phi_X(0) = \phi, P_X(0) = p$, we have

$$D(\Phi_X \| P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\bar{\phi}}{\bar{p}}.$$

We divide the space into two intervals: $[0, p]$ and $[p, 1]$

• When $\phi \in [0, p]$, $D(\Phi_X \| P_X)$ is decreasing in ϕ. In this range, we define Φ_t by

$$D(\phi_t \| p) := (1 - t)D(0 \| p) + tD(p \| p) = (1 - t) \ln \left(\frac{1}{1 - p}\right).$$
Reparametrization

Given P_X, since the input space is binary, denote $\Phi_X(0) = \phi, P_X(0) = p$, we have

$$D(\Phi_X \parallel P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\bar{\phi}}{\bar{p}}.$$

We divide the space into two intervals: $[0, p]$ and $[p, 1]$

- When $\phi \in [0, p]$, $D(\Phi_X \parallel P_X)$ is decreasing in ϕ. In this range, we define Φ_t by
 $$D(\phi_t \parallel p) := (1 - t)D(0 \parallel p) + tD(p \parallel p) = (1 - t) \ln \left(\frac{1}{1 - p}\right).$$

- When $\phi \in [p, 1]$, $D(\Phi_X \parallel P_X)$ is increasing in ϕ. In this range, we define Φ_t by
 $$D(\phi_t \parallel p) := (1 - t)D(p \parallel p) + tD(1 \parallel p) = t \ln \left(\frac{1}{p}\right).$$
Reparametrization

Given P_X, since the input space is binary, denote $\Phi_X(0) = \phi, P_X(0) = p$, we have

$$D(\Phi_X \| P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\bar{\phi}}{\bar{p}}.$$

We divide the space into two intervals: $[0, p]$ and $[p, 1]$

- When $\phi \in [0, p]$, $D(\Phi_X \| P_X)$ is decreasing in ϕ. In this range, we define Φ_t by
 $$D(\phi_t \| p) := (1 - t)D(0 \| p) + tD(p \| p) = (1 - t) \ln \left(\frac{1}{1 - p} \right).$$

- When $\phi \in [p, 1]$, $D(\Phi_X \| P_X)$ is increasing in ϕ. In this range, we define Φ_t by
 $$D(\phi_t \| p) := (1 - t)D(p \| p) + tD(1 \| p) = t \ln \left(\frac{1}{p} \right).$$

When p_X is uniform, then in $[0, \frac{1}{2}]$, we have

$$1 - H_2(\phi_t) = D \left(\phi_t \| \frac{1}{2} \right) = (1 - t).$$

Hence $\phi_t = H_2^{-1}(t)$. (parameterization used in Mrs. Gerber’s lemma)
Main Result

Consider a 2-to-n channel $W_{Y|X}$ as follows.

$$W_{Y|X} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

Here $W_{ij} = P(Y = i|X = j)$. Let $\Phi_{X,t} := (\phi_t, \overline{\phi_t})$ w.r.t. t, where $\overline{\phi_t} = 1 - \phi_t$.

Main Result

Consider a 2-to-n channel $W_{Y|X}$ as follows.

$$W_{Y|X} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

Here $W_{ij} = P(Y = i|X = j)$. Let $\Phi_{X,t} := (\phi_t, \bar{\phi}_t)$ w.r.t. t, where $\bar{\phi}_t = 1 - \phi_t$.

Theorem

Under the previous reparameterization, $D((W\Phi_{X,t})_Y \parallel (WP)_Y)$ is concave in t, if $p = p^$ where p^* is the unique solution to*

$$\sum_{i=1}^n \frac{(a_i - b_i)a_ib_i}{(pa_i + \bar{p}b_i)^2} = 0. \quad (1)$$
Main Result

Consider a 2-to-n channel $W_{Y|X}$ as follows.

$$W_{Y|X} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

Here $W_{ij} = P(Y = i|X = j)$. Let $\Phi_{X,t} := (\phi_t, \bar{\phi}_t)$ w.r.t. t, where $\bar{\phi}_t = 1 - \phi_t$.

Theorem

Under the previous reparameterization, $D((W\Phi_{X,t})_Y \parallel (WP)_Y)$ is concave in t, if $p = p^$ where p^* is the unique solution to

$$\sum_{i=1}^n \frac{(a_i - b_i)a_ib_i}{(pa_i + \bar{b}_i)^2} = 0.$$ (1)

This generalizes Mrs. Gerber’s lemma to other channels.*
Main Result

Consider a 2-to-n channel $W_{Y|X}$ as follows.

\[
W_{Y|X} = \begin{bmatrix}
a_1 & b_1 \\
a_2 & b_2 \\
\vdots & \vdots \\
a_n & b_n
\end{bmatrix}
\]

Here $W_{ij} = P(Y = i|X = j)$. Let $\Phi_{X,t} := (\phi_t, \overline{\phi_t})$ w.r.t. t, where $\overline{\phi_t} = 1 - \phi_t$.

Theorem

Under the previous reparameterization, $D((W\Phi_{X,t})_Y \parallel (WP)_Y)$ is concave in t, only if $p = p^*$ where p^* is the unique solution to

\[
\sum_{i=1}^{n} \frac{(a_i - b_i)a_ib_i}{(pa_i + \overline{p}b_i)^2} = 0.
\]
Sufficiency of \(p = p^* \)

For convenience, we define \(q_i = a_i p^* + b_i \bar{p}^* \) and \(\psi_i = a_i \phi + b_i \bar{\phi} \).

\[
D((W \Phi_{X,t})_{Y} \parallel (WP)_{Y}) = \sum_{i=1}^{n} \psi_i \ln \frac{\psi_i}{q_i}
\]
Sufficiency of $p = p^*$

For convenience, we define $q_i = a_ip^* + b_i\bar{p}^*$ and $\psi_i = a_i\phi + b_i\bar{\phi}$.

$$D((W\Phi X,t)_Y \|(WP)_Y) = \sum_{i=1}^{n} \psi_i \ln \frac{\psi_i}{q_i}$$

For concavity: We want $\frac{d^2}{dt^2} D((W\Phi X,t)_Y \|(WP)_Y) \leq 0$.

We get (using the linearity of parameterization)

$$\frac{d^2}{dt^2} D((W\Phi X,t)_Y \|(WP)_Y) \stackrel{(a)}{=} \sum_{i=1}^{n} \left[-(a_i - b_i) \frac{\phi'^2}{\phi\phi} \ln \frac{\psi_i}{q_i} \left(\ln \frac{\phi\bar{p}^*}{\phi p^*} \right)^{-1} + \frac{(a_i - b_i)^2 \phi'^2}{\psi_i} \right]$$
Sufficiency of $p = p^*$

For convenience, we define $q_i = a_i p^* + b_i \bar{p}^*$ and $\psi_i = a_i \phi + b_i \bar{\phi}$.

$$D((W \Phi_{X,t})_Y || (W P)_Y) = \sum_{i=1}^{n} \psi_i \ln \frac{\psi_i}{q_i}$$

For concavity: We want $\frac{d^2}{dt^2} D((W \Phi_{X,t})_Y || (W P)_Y) \leq 0$.

We get (using the linearity of parameterization)

$$\frac{d^2}{dt^2} D((W \Phi_{X,t})_Y || (W P)_Y) = \sum_{i=1}^{n} \left[-(a_i - b_i) \frac{\phi r^2}{\phi \bar{\phi}} \ln \frac{\psi_i}{q_i} \left(\ln \frac{\phi \bar{p}^*}{\phi p^*} \right)^{-1} + \frac{(a_i - b_i)^2 \phi r^2}{\psi_i} \right]$$

$\frac{d^2}{dt^2} D((W \Phi_{X,t})_Y || (W P)_Y) \leq 0$ is equivalent to

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}^*}{\phi p^*} \right] \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$
Sufficiency of $p = p^*$

To show

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi p^*}{\phi^*} \right] \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$
Sufficiency of $p = p^*$

To show

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi p^*}{\bar{\phi} p^*} \right]$$

\[\begin{cases}
\geq 0, & 0 \leq \phi \leq p^*; \\
\leq 0, & p^* \leq \phi \leq 1.
\end{cases}\]

Observe that $f(p^*; p^*) = 0$.

Suffices to show that $f(\phi; p^*)$ is decreasing on $0 \leq \phi \leq 1$.

Let $g(\phi) := \sum_{i=1}^{n} \frac{a_i b_i (a_i - b_i)}{(a_i \phi + b_i \phi)^2}$, then $\frac{d}{d\phi} f(\phi; p^*) = g(\phi) \ln \frac{\phi p^*}{\bar{\phi} p^*}$.

$f(\phi; p^*)$ is decreasing on $0 \leq \phi \leq 1$ is equivalent to

$$g(\phi) \begin{cases}
\geq 0, & 0 \leq \phi \leq p^*; \\
\leq 0, & p^* \leq \phi \leq 1.
\end{cases}$$
Sufficiency of $p = p^*$

To show

$$f(\phi; p^*) := \sum_{i=1}^n \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi\bar{\phi}}{\psi_i} \ln \frac{\phi p^*}{\phi p^*} \right] \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$

Observe that $f(p^*; p^*) = 0$.

Suffices to show that $f(\phi; p^*)$ is decreasing on $0 \leq \phi \leq 1$.

Let $g(\phi) := \sum_{i=1}^n \frac{a_i b_i (a_i - b_i)}{(a_i \phi + b_i \phi)^2}$, then $\frac{d}{d\phi} f(\phi; p^*) = g(\phi) \ln \frac{\phi p^*}{\phi p^*}$.

$f(\phi; p^*)$ is decreasing on $0 \leq \phi \leq 1$ is equivalent to

$$g(\phi) \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$

Observe that $g(p^*) = 0$. (definition of p^*).

Suffices to show that $g(\phi)$ is decreasing on $0 \leq \phi \leq 1$.
Sufficiency of $p = p^*$

To show

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi p^*}{\phi p^*} \right] \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$

Observe that $f(p^*; p^*) = 0$.

Suffices to show that $f(\phi; p^*)$ is decreasing on $0 \leq \phi \leq 1$.

Let $g(\phi) := \sum_{i=1}^{n} \frac{a_i b_i (a_i - b_i)}{(a_i \phi + b_i \bar{\phi})^2}$, then $\frac{d}{d\phi} f(\phi; p^*) = g(\phi) \ln \frac{\phi p^*}{\phi p^*}$.

$f(\phi; p^*)$ is decreasing on $0 \leq \phi \leq 1$ is equivalent to

$$g(\phi) \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$

Taking derivative of $g(\phi)$ gives

$$\frac{d}{d\phi} g(\phi) = -\sum_{i=1}^{n} \frac{2(a_i - b_i)^2 a_i b_i}{(a_i \phi + b_i \bar{\phi})^3} < 0 \quad \square$$
Necessity of $p = p^*$

Assume concavity, i.e. \(\frac{d^2}{dt^2} D((W\Phi_{X,t})_Y \parallel (W\Phi_X)_Y) \leq 0 \)

\[
f(\phi; p) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\bar{\phi} p}{\phi} \right] \begin{cases}
\geq 0, & 0 \leq \phi \leq p; \\
\leq 0, & p \leq \phi \leq 1.
\end{cases}
\]

Taylor expansion around $\phi = p$ gives

\[
f(p + \varepsilon; p) = \left. \frac{\partial^2 f(\phi; p)}{\partial \phi^2} \right|_{\phi=p} \varepsilon^2 + O(\varepsilon^3).
\]

Note that we used $f(p; p) = \left. \frac{\partial f(\phi; p)}{\partial \phi} \right|_{\phi=p} = 0$.

Necessity of $p = p^*$

Assume concavity, i.e. $\frac{d^2}{dt^2} D((W \Phi_{X,t})_Y \| (W P)_Y) \leq 0$

$$f(\phi; p) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \phi}{\psi_i} \ln \frac{\phi \phi}{\phi p} \right] \begin{cases} \geq 0, & 0 \leq \phi \leq p; \\ \leq 0, & p \leq \phi \leq 1. \end{cases}$$

Taylor expansion around $\phi = p$ gives

$$f(p + \varepsilon; p) = \left. \frac{\partial^2 f(\phi; p)}{\partial \phi^2} \right|_{\phi=p} \varepsilon^2 + O(\varepsilon^3).$$

Note that we used $f(p; p) = \left. \frac{\partial f(\phi; p)}{\partial \phi} \right|_{\phi=p} = 0$.

The concavity condition forces that

$$\left. \frac{\partial^2 f(\phi; p)}{\partial \phi^2} \right|_{\phi=p} = \frac{1}{p \bar{p}} g(p) = 0.$$
Necessity of $p = p^*$

Assume concavity, i.e. $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y\| (WP)_Y) \leq 0$

$$f(\phi; p) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)\bar\phi \ln \frac{\phi p}{\phi \bar\phi} \right] \begin{cases} \geq 0, & 0 \leq \phi \leq p; \\ \leq 0, & p \leq \phi \leq 1. \end{cases}$$

Taylor expansion around $\phi = p$ gives

$$f(p + \varepsilon; p) = \left. \frac{\partial^2 f(\phi; p)}{\partial \phi^2} \right|_{\phi=p} \varepsilon^2 + O(\varepsilon^3).$$

Note that we used $f(p; p) = \left. \frac{\partial f(\phi; p)}{\partial \phi} \right|_{\phi=p} = 0$.

The concavity condition forces that

$$\left. \frac{\partial^2 f(\phi; p)}{\partial \phi^2} \right|_{\phi=p} = \frac{1}{\bar p} g(p) = 0. \quad g(p) = 0 \iff p = p^*$$

Therefore, $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y\| (WP)_Y) \leq 0$ only if $p = p^*$.
When $p \neq p^*$

We still have one-sided concavity when $p \neq p^*$.

Theorem (one-sided concavity for $p \neq p^*$)

- If $p > p^*$, $D((W\Phi_{X,t})_Y \Vert (WP)_Y)$ is concave on $\phi \in [p, 1]$.
- If $p < p^*$, $D((W\Phi_{X,t})_Y \Vert (WP)_Y)$ is concave on $\phi \in [0, p]$.
When $p \neq p^*$

We still have one-sided concavity when $p \neq p^*$.

Theorem (one-sided concavity for $p \neq p^*$)

- If $p > p^*$, $D((W\Phi_X,t)Y\|WP)Y)$ is concave on $\phi \in [p, 1]$.
- If $p < p^*$, $D((W\Phi_X,t)Y\|WP)Y)$ is concave on $\phi \in [0, p]$.

Unfortunately, it is not necessarily concave in the remaining segment.
When \(p \neq p^* \)

We still have one-sided concavity when \(p \neq p^* \).

Theorem (one-sided concavity for \(p \neq p^* \))

- If \(p > p^* \), \(D((W \Phi_X,t)_Y \parallel (WP)_Y) \) is concave on \(\phi \in [p, 1] \).
- If \(p < p^* \), \(D((W \Phi_X,t)_Y \parallel (WP)_Y) \) is concave on \(\phi \in [0, p] \).

Unfortunately, it is not necessarily concave in the remaining segment.

Natural question: Are there other parameterizations of \(\phi_X \) that makes the functional \(\lambda D(\Phi_X,t \parallel P_X) - D((W \Phi_X,t)_Y \parallel (WP)_Y) \) convex for \(p \neq p^* \).
When $p \neq p^*$

We still have one-sided concavity when $p \neq p^*$.

Theorem (one-sided concavity for $p \neq p^*$)

- If $p > p^*$, $D((W\Phi_X,t)_Y\|WP)_Y)$ is concave on $\phi \in [p,1]$.
- If $p < p^*$, $D((W\Phi_X,t)_Y\|WP)_Y)$ is concave on $\phi \in [0,p]$.

Unfortunately, it is not necessarily concave in the remaining segment.

Natural question: Are there other parameterizations of ϕ_X that makes the functional $\lambda D(\Phi_X,t\|P_X) - D((W\Phi_X,t)_Y\|WP)_Y)$ convex for $p \neq p^*$.

Answer: No
Consider a BSC with $\epsilon = 0.3$, when $p = 0.4 \neq p^* = 0.5$ and $\lambda = 0.1584$.

![Graph showing the relationship between ϕ and $\lambda D(\Phi X \| P X) - D((W \Phi) Y \| (WP) Y)$]
Lack of parametrization

Consider a BSC with $\epsilon = 0.3$, when $p = 0.4 \neq p^* = 0.5$ and $\lambda = 0.1584$.

- Any parametrization using a submersion (differentiable map) will map strict local maximizers to strict local maximizers.
- No convex function can have an interior local maximizer.
- Impossible to reparameterize in the regime $[0.4, 1]$ into a convex function.
Beyond binary inputs

Given a m-to-n channel W, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \geq 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

$$\phi(t) := (\phi(t), \alpha - \phi(t), \phi_3, ... \phi_n)$$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^{n} \phi_i = 1 - \alpha$.
Beyond binary inputs

Given a m-to-n channel W, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \geq 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

$$\phi(t) := (\phi(t), \alpha - \phi(t), \phi_3, ... \phi_n)$$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^{n} \phi_i = 1 - \alpha$.

Corollary

Then there exists a P_X on this interval and a similar $\Phi_{X,t}$ of this interval that makes

$$\lambda D(\Phi_{X,t} \| P_X) - D((W \Phi_{X,t})_Y \| (WP)_Y)$$

convex in t.
Beyond binary inputs

Given a m-to-n channel W, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \geq 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

$$\phi(t) := (\phi(t), \alpha - \phi(t), \phi_3, ... \phi_n)$$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^n \phi_i = 1 - \alpha$.

Corollary

Then there exists a P_X on this interval and a similar $\Phi_{X,t}$ of this interval that makes

$$\lambda D(\Phi_{X,t} \parallel P_X) - D((W \Phi_{X,t})_Y \parallel (WP)_Y)$$

convex in t. Previous one-sided concavity result also generalizes to this setting.
Beyond binary inputs

Given a m-to-n channel W, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \geq 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

$$\phi(t) := (\phi(t), \alpha - \phi(t), \phi_3, ... \phi_n)$$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^{n} \phi_i = 1 - \alpha$.

Corollary

Then there exists a P_X on this interval and a similar $\Phi_{X,t}$ of this interval that makes

$$\lambda D(\Phi_{X,t} \parallel P_X) - D((W \Phi_{X,t})_Y \parallel (WP)_Y)$$

convex in t.

Proof: Effectively reduces to a new 2-to-n channel.
Issues with generalization to higher alphabets

Can we find a path from ϕ_X to (some) p^*_X so that under a suitable parametrization

$$\lambda D(\Phi_X,t\|P_X) - D((W\Phi_X,t)_Y\|(WP)_Y)$$

is convex in t.
Issues with generalization to higher alphabets

Can we find a path from \(\phi_X \) to (some) \(p^*_X \) so that under a suitable parametrization

\[
\lambda D(\Phi_{X,t} \parallel P_X) - D((W\Phi_{X,t})_Y \parallel (WP)_Y)
\]

is convex in \(t \).

- In binary input, the path was fixed (since the space is a line).
- In higher alphabets, there are many possible choices for paths between two points (even in some fixed partition of the space).
Issues with generalization to higher alphabets

Can we find a path from \(\phi_X \) to (some) \(p_X^* \) so that under a suitable parametrization

\[
\lambda D(\Phi_X, t \| P_X) - D((W \Phi_X, t)_Y \| (WP)_Y)
\]

is convex in \(t \).

Consider the following 3-SC:

\[
W(y|x) = \begin{bmatrix}
0.55 & 0.15 & 0.15 \\
0.15 & 0.55 & 0.15 \\
0.15 & 0.15 & 0.55
\end{bmatrix}.
\]

A natural guess for \(p^* \) is \(P_X = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \) by symmetry.
Issues with generalization to higher alphabets

Can we find a path from ϕ_X to (some) p^*_X so that under a suitable parametrization

$$
\lambda D(\Phi_X,t\|P_X) - D((W\Phi_X,t)_Y\|(WP)_Y)
$$

is convex in t.

When $\lambda = 0.309$, there are has four local minimizers.
What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers
Remarks and future directions

What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers

Related Work

- n-SC: all local minimizers lie on the paths connecting the center $P_X = \frac{1}{n}1_n$ and e_i’s (the vertices).
- This is a one-dimensional space. And there is at most one local minimizer on each path excluding the center.
Remarks and future directions

What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers

Related Work

- n-SC: all local minimizers lie on the paths connecting the center $P_X = \frac{1}{n}1_n$ and e_i’s (the vertices).
- This is a one-dimensional space. And there is at most one local minimizer on each path excluding the center.

Such results may be obtainable using the ideas here.

- They could be useful for designing algorithms
- They could be useful in establishing capacity regions
Remarks and future directions

What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers

Related Work

- n-SC: all local minimizers lie on the paths connecting the center $P_X = \frac{1}{n}1_n$ and e_i’s (the vertices).
- This is a one-dimensional space. And there is at most one local minimizer on each path excluding the center.

Such results may be obtainable using the ideas here.

- They could be useful for designing algorithms
- They could be useful in establishing capacity regions

Thank you for watching our presentation