Concavity of output relative entropy for channels with binary inputs

 $^1\mathrm{Dept.}$ of Computer Science and Engg., The Chinese University of Hong Kong

 $^2\mathrm{Dept.}$ of Information Engg., The Chinese University of Hong Kong

IEEE ISIT 2021

Motivation

This talk is motivated by the study of non-convex optimization problems in network information theory.

Motivation

Motivation - 1 (Distributed Source Coding)

Let (X^n, Y^n) be a sequence of discrete random variables that are generated i.i.d. according to P_{XY} , denoted as 2-DMS, and the decoder would like to recover Y^n .

Figure 1: Distributed Source Coding With One Helper

Motivation

Motivation - 1 (Distributed Source Coding)

Let (X^n, Y^n) be a sequence of discrete random variables that are generated i.i.d. according to P_{XY} , denoted as 2-DMS, and the decoder would like to recover Y^n .

Figure 1: Distributed Source Coding With One Helper

A rate pair (R_X, R_Y) is achievable if there exists a sequence of (n, R_X, R_Y) -codes such that the $\Pr(\hat{Y}^n \neq Y^n) \to 0$ as $n \to \infty$.

Source Coding Problem [Ahlswede-Körner, '75] What rate pairs (R_X, R_Y) are achievable under the above setting?

Motivation - 1 (Distributed Source Coding)

Source Coding Problem - Optimal Rate Region [Ahlswede-Körner, '75] Given a 2-DMS P_{XY} , the optimal rate region is given by,

 $R_X \ge I(U; X)$ $R_Y \ge H(Y|U),$

for some distribution $P_{U|X}$ such that $U \to X \to Y$ forms a Markov chain. Moreover, it suffices to consider $|\mathcal{U}| \leq |\mathcal{X}| + 1$.

Motivation - 1 (Distributed Source Coding)

Source Coding Problem - Optimal Rate Region [Ahlswede-Körner, '75] Given a 2-DMS P_{XY} , the optimal rate region is given by,

 $R_X \ge I(U; X)$ $R_Y \ge H(Y|U),$

for some distribution $P_{U|X}$ such that $U \to X \to Y$ forms a Markov chain. Moreover, it suffices to consider $|\mathcal{U}| \leq |\mathcal{X}| + 1$.

Evaluation of the region: using weighted sum-rates The minimum λ -sum rate $\lambda R_X + R_Y$ is,

> $\min_{p_{U|X}} H(Y|U) + \lambda I(U;X)$ = $\lambda H(X) - \max_{p_{U|X}} \{\lambda H(X|U) - H(Y|U)\}$ = $\lambda H(X) - \mathfrak{C}[\lambda H(X) - H(Y)](P_X).$

Non-trivial regime: $\lambda \in (0, 1)$.

The above optimization problem is a non-convex optimization problem in general.

Ding-Lau-Nair-Wang	
--------------------	--

Define $f(\Phi_X) := \lambda H(X) - H(Y)$. $\mathfrak{C}[f]$ is the upper concave envelope of the function f.

Upper Concave Envelope

 $\mathfrak{C}_{\Phi_X}[f] := \inf \{ g : g \text{ is concave w.r.t. } \Phi_X \text{ and } g(\Phi_X) \ge f(\Phi_X), \forall \Phi_X \}$

Define $f(\Phi_X) := \lambda H(X) - H(Y)$. $\mathfrak{C}[f]$ is the upper concave envelope of the function f.

Upper Concave Envelope

 $\mathfrak{C}_{\Phi_X}[f] := \inf \left\{ g : g \text{ is concave w.r.t. } \Phi_X \text{ and } g(\Phi_X) \ge f(\Phi_X), \forall \Phi_X \right\}$

From an optimization perspective

- Computing the concave envelope is not easy (in general)
- Essentially the difficulty can be translated into that of computing the dual function

Define $f(\Phi_X) := \lambda H(X) - H(Y)$. $\mathfrak{C}[f]$ is the upper concave envelope of the function f.

Upper Concave Envelope

 $\mathfrak{C}_{\Phi_X}[f] := \inf \{ g : g \text{ is concave w.r.t. } \Phi_X \text{ and } g(\Phi_X) \ge f(\Phi_X), \forall \Phi_X \}$

Fenchel's Dual Representation

Given $d_X = (d_x, x \in \mathcal{X})$ a real-valued vector of length $|\mathcal{X}|$, the Fenchel-dual of the function is

$$f^{\dagger}(d_X) := \sup_{\Phi_X} \left\{ f(\Phi_X) - \sum_{x \in \mathcal{X}} d_x \Phi_X(x) \right\}.$$

The dual variables d_x define hyperplanes, and $f^{\dagger}(d_X)$ is convex in d_X .

Define $f(\Phi_X) := \lambda H(X) - H(Y)$. $\mathfrak{C}[f]$ is the upper concave envelope of the function f.

Upper Concave Envelope

 $\mathfrak{C}_{\Phi_X}[f] := \inf \{ g : g \text{ is concave w.r.t. } \Phi_X \text{ and } g(\Phi_X) \ge f(\Phi_X), \forall \Phi_X \}$

Fenchel's Dual Representation

Given $d_X = (d_x, x \in \mathcal{X})$ a real-valued vector of length $|\mathcal{X}|$, the Fenchel-dual of the function is

$$f^{\dagger}(d_X) := \sup_{\Phi_X} \left\{ f(\Phi_X) - \sum_{x \in \mathcal{X}} d_x \Phi_X(x) \right\}$$
$$\mathfrak{C}_{\Phi_X}[f](P_X) = \inf_{d_X} \left\{ f^{\dagger}(d_X) + \sum_{x \in \mathcal{X}} d_x P_X(x) \right\}$$

The dual of the dual yields the upper concave envelope.

Ding-Lau-Nair-Wang

Concavity of relative entropy

Motivation - 1 (Distributed Source Coding)

Plot of Upper Concave Envelope

Simple Observation: Suffices to consider gradients (dual variables) at interior distributions P_X .

Motivation - 1 (Distributed Source Coding) Dual representation

$$f(\Phi_X) = \lambda H(\Phi_X) - H((W\Phi)_Y).$$

Let P_X be an interior distribution.

The gradient induced here, say d_X , is given by

$$d_X = \frac{\partial f(\Phi_X)}{\partial \Phi_X} \bigg|_{P_X}$$
$$= -\lambda \ln P_X + \sum_y W_{Y|X} \ln P_Y.$$

Motivation - 1 (Distributed Source Coding) Dual representation

$$f(\Phi_X) = \lambda H(\Phi_X) - H((W\Phi)_Y).$$

Let P_X be an interior distribution.

The gradient induced here, say d_X , is given by

$$d_X = \frac{\partial f(\Phi_X)}{\partial \Phi_X} \bigg|_{P_X}$$

= $-\lambda \ln P_X + \sum_y W_{Y|X} \ln P_Y.$
 $f^{\dagger}(d_X) := \sup_{\Phi_X} \left\{ f(\Phi_X) - \sum_{x \in \mathcal{X}} d_x \Phi_X(x) \right\}$

Substituting the above d_X into f^{\dagger} , we have,

$$f^{\dagger}(d_X) = -\inf_{\Phi_X} \left\{ \lambda D(\Phi_X || P_X) - D((W\Phi)_Y || (WP)_Y) \right\}.$$

[Ahlswede-Körner, '74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

 $f_1(c) := \inf_{H(X) \ge c} H(Y)$

[Ahlswede-Körner, '74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

 $f_1(c) := \inf_{H(X) \ge c} H(Y)$

[Witsenhausen-Wyner, '74] showed that given any discrete memoryless channel (DMC) $W_{Y|X}$ and an input distribution P_X , for any Markov chain $U \to X \to Y$ where U is discrete r.v., the function

$$f_2(c) := \inf_{H(X|U)=c} H(Y|U)$$

is convex in c.

[Ahlswede-Körner, '74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

 $f_1(c) := \inf_{H(X) \ge c} H(Y)$

[Witsenhausen-Wyner, '74] showed that given any discrete memoryless channel (DMC) $W_{Y|X}$ and an input distribution P_X , for any Markov chain $U \to X \to Y$ where U is discrete r.v., the function

$$f_2(c) := \inf_{H(X|U)=c} H(Y|U)$$

is convex in c.

They explicitly calculated the function $\inf_{H(X|U)=c} H(Y|U)$ for BSC, BEC and Z channels (essentially using Fenchel duality).

[Ahlswede-Körner, '74] showed that given 2-to-2 DMC $W_{Y|X}$, the following function is convex in c.

 $f_1(c) := \inf_{H(X) \ge c} H(Y)$

[Witsenhausen-Wyner, '74] showed that given any discrete memoryless channel (DMC) $W_{Y|X}$ and an input distribution P_X , for any Markov chain $U \to X \to Y$ where U is discrete r.v., the function

$$f_2(c) := \inf_{H(X|U)=c} H(Y|U)$$

is convex in c.

They explicitly calculated the function $\inf_{H(X|U)=c} H(Y|U)$ for BSC, BEC and Z channels (essentially using Fenchel duality).

This work: we are looking at (essentially) the same problem from an optimization perspective for arbitrary 2-to-n channels.

Motivation - 2

Given $\lambda \in (0, 1)$, $W_{Y|X}$, and μ_X . View W as a Markov operator T, where for f(Y) we have Tf = E(f|X). Define

```
c_{\lambda} = \inf\{c : \mathbb{E}(\exp(T\ln f)) \le \|f\|_{\lambda} e^{\frac{c}{\lambda}}, \quad \forall f(Y) > 0\}.
```

Also define

 $m_{\lambda} := \inf_{\nu_X: \mu_X \ll \nu_X} \lambda D(\nu_X \| \mu_X) - D((W\nu)_Y \| (W\mu)_Y).$

Motivation - 2

Given $\lambda \in (0, 1)$, $W_{Y|X}$, and μ_X . View W as a Markov operator T, where for f(Y) we have Tf = E(f|X). Define

```
c_{\lambda} = \inf\{c : \mathbb{E}(\exp(T\ln f)) \le \|f\|_{\lambda} e^{\frac{c}{\lambda}}, \quad \forall f(Y) > 0\}.
```

Also define

$$m_{\lambda} := \inf_{\nu_X: \mu_X \ll \nu_X} \lambda D(\nu_X \| \mu_X) - D((W\nu)_Y \| (W\mu)_Y).$$

Theorem (Corollary of Ahlswede-Gacs '76)

 $m_{\lambda} = -c_{\lambda}.$

Motivation - 2

Given $\lambda \in (0, 1)$, $W_{Y|X}$, and μ_X . View W as a Markov operator T, where for f(Y) we have Tf = E(f|X). Define

```
c_{\lambda} = \inf\{c : \mathbb{E}(\exp(T\ln f)) \le \|f\|_{\lambda} e^{\frac{c}{\lambda}}, \quad \forall f(Y) > 0\}.
```

Also define

$$m_{\lambda} := \inf_{\nu_X: \mu_X \ll \nu_X} \lambda D(\nu_X \| \mu_X) - D((W\nu)_Y \| (W\mu)_Y).$$

Theorem (Corollary of Ahlswede-Gacs '76)

 $m_{\lambda} = -c_{\lambda}.$

- Related to strong data processing inequalities
- Original Motivation: This is the simplest case of a similar functional appearing in the evaluation of Marton's inner bound for broadcast channels

Non-Convex Optimization Problem

- $\lambda \in (0,1)$
- $W_{Y|X}$: a discrete memoryless channel
- P_X : a fixed "source/input" distribution
- $(WP)_Y$: channel induced output distribution

Non-Convex Optimization Problem

- $\lambda \in (0,1)$
- $W_{Y|X}$: a discrete memoryless channel
- P_X : a fixed "source/input" distribution
- $(WP)_Y$: channel induced output distribution
- Both $D(\Phi_X || P_X)$ and $D((W\Phi)_Y || (WP)_Y)$ are convex in Φ_X . The difference is non-convex in general.

Non-Convex Optimization Problem

- $\bullet \ \lambda \in (0,1)$
- $W_{Y|X}$: a discrete memoryless channel
- P_X : a fixed "source/input" distribution
- $(WP)_Y$: channel induced output distribution
- Both $D(\Phi_X || P_X)$ and $D((W\Phi)_Y || (WP)_Y)$ are convex in Φ_X . The difference is non-convex in general.
- Idea: We want to make $D(\Phi_X || P_X)$ linear in parameter t and hope that $D((W\Phi)_Y || (WP)_Y)$ becomes concave.

Non-Convex Optimization Problem

- $\bullet \ \lambda \in (0,1)$
- $W_{Y|X}$: a discrete memoryless channel
- P_X : a fixed "source/input" distribution
- $(WP)_Y$: channel induced output distribution
- Both $D(\Phi_X || P_X)$ and $D((W\Phi)_Y || (WP)_Y)$ are convex in Φ_X . The difference is non-convex in general.
- Idea: We want to make $D(\Phi_X || P_X)$ linear in parameter t and hope that $D((W\Phi)_Y || (WP)_Y)$ becomes concave.
- This parameterization is motivated by [Vishnoi-Sra-Yildiz '18] for positive definite matrices where they reformulate the problem of computing the Brascamp-Lieb constant into convex optimization.

Given P_X , since the input space is binary, denote $\Phi_X(0) = \phi$, $P_X(0) = p$, we have

$$D(\Phi_X || P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\phi}{\bar{p}}.$$

We divide the space into two intervals: [0, p] and [p, 1]

Given P_X , since the input space is binary, denote $\Phi_X(0) = \phi$, $P_X(0) = p$, we have

$$D(\Phi_X \| P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\phi}{\bar{p}}.$$

We divide the space into two intervals: [0, p] and [p, 1]

• When $\phi \in [0, p]$, $D(\Phi_X || P_X)$ is decreasing in ϕ . In this range, we define Φ_t by

$$D(\phi_t \| p) := (1-t)D(0\| p) + tD(p\| p) = (1-t)\ln\left(\frac{1}{1-p}\right).$$

Given P_X , since the input space is binary, denote $\Phi_X(0) = \phi$, $P_X(0) = p$, we have

$$D(\Phi_X || P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\phi}{\bar{p}}.$$

We divide the space into two intervals: [0, p] and [p, 1]

- When $\phi \in [0, p]$, $D(\Phi_X || P_X)$ is decreasing in ϕ . In this range, we define Φ_t by $D(\phi_t || p) := (1 - t)D(0|| p) + tD(p|| p) = (1 - t)\ln\left(\frac{1}{1 - p}\right).$
- When $\phi \in [p, 1]$, $D(\Phi_X || P_X)$ is increasing in ϕ . In this range, we define Φ_t by

$$D(\phi_t \| p) := (1 - t)D(p \| p) + tD(1 \| p) = t \ln\left(\frac{1}{p}\right).$$

Given P_X , since the input space is binary, denote $\Phi_X(0) = \phi$, $P_X(0) = p$, we have

$$D(\Phi_X \| P_X) = \phi \ln \frac{\phi}{p} + \bar{\phi} \ln \frac{\phi}{\bar{p}}.$$

We divide the space into two intervals: [0, p] and [p, 1]

- When $\phi \in [0, p]$, $D(\Phi_X || P_X)$ is decreasing in ϕ . In this range, we define Φ_t by $D(\phi_t || p) := (1 - t)D(0|| p) + tD(p|| p) = (1 - t)\ln\left(\frac{1}{1 - p}\right).$
- When $\phi \in [p, 1]$, $D(\Phi_X || P_X)$ is increasing in ϕ . In this range, we define Φ_t by

$$D(\phi_t \| p) := (1 - t)D(p \| p) + tD(1 \| p) = t \ln\left(\frac{1}{p}\right).$$

When p_X is uniform, then in $[0, \frac{1}{2}]$, we have

$$1 - H_2(\phi_t) = D\left(\phi_t \| \frac{1}{2}\right) = (1 - t).$$

Hence $\phi_t = H_2^{-1}(t)$. (parameterization used in Mrs. Gerber's lemma)

Ding-Lau-Nair-Wang

Consider a 2-to-*n* channel $W_{Y|X}$ as follows.

$$W_{Y|X} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

Here $W_{ij} = P(Y = i | X = j)$. Let $\Phi_{X,t} := (\phi_t, \overline{\phi_t})$ w.r.t. t, where $\overline{\phi_t} = 1 - \phi_t$.

Consider a 2-to-*n* channel $W_{Y|X}$ as follows.

$$W_{Y|X} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

Here $W_{ij} = P(Y = i | X = j)$. Let $\Phi_{X,t} := (\phi_t, \overline{\phi_t})$ w.r.t. t, where $\overline{\phi_t} = 1 - \phi_t$.

Theorem

Under the previous reparameterization, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave in t, if $p = p^*$ where p^* is the unique solution to

$$\sum_{i=1}^{n} \frac{(a_i - b_i)a_i b_i}{(pa_i + \bar{p}b_i)^2} = 0.$$
 (1)

Consider a 2-to-*n* channel $W_{Y|X}$ as follows.

$$W_{Y|X} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

Here $W_{ij} = P(Y = i | X = j)$. Let $\Phi_{X,t} := (\phi_t, \overline{\phi_t})$ w.r.t. t, where $\overline{\phi_t} = 1 - \phi_t$.

Theorem

Under the previous reparameterization, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave in t, if $p = p^*$ where p^* is the unique solution to

$$\sum_{i=1}^{n} \frac{(a_i - b_i)a_i b_i}{(pa_i + \bar{p}b_i)^2} = 0.$$
(1)

This generalizes Mrs. Gerber's lemma to other channels.

Consider a 2-to-*n* channel $W_{Y|X}$ as follows.

$$W_{Y|X} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

Here $W_{ij} = P(Y = i | X = j)$. Let $\Phi_{X,t} := (\phi_t, \overline{\phi_t})$ w.r.t. t, where $\overline{\phi_t} = 1 - \phi_t$.

Theorem

Under the previous reparameterization, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave in t, only if $p = p^*$ where p^* is the unique solution to

$$\sum_{i=1}^{n} \frac{(a_i - b_i)a_i b_i}{(pa_i + \bar{p}b_i)^2} = 0.$$

For convenience, we define $q_i = a_i p^* + b_i \bar{p^*}$ and $\psi_i = a_i \phi + b_i \bar{\phi}$.

$$D((W\Phi_{X,t})_Y || (WP)_Y) = \sum_{i=1}^n \psi_i \ln \frac{\psi_i}{q_i}$$

For convenience, we define $q_i = a_i p^* + b_i \bar{p^*}$ and $\psi_i = a_i \phi + b_i \bar{\phi}$.

$$D((W\Phi_{X,t})_Y || (WP)_Y) = \sum_{i=1}^n \psi_i \ln \frac{\psi_i}{q_i}$$

For concavity: We want $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y || (WP)_Y) \le 0.$ We get (using the linearity of parameterization)

$$\frac{d^2}{dt^2} D((W\Phi_{X,t})_Y \| (WP)_Y) \stackrel{(a)}{=} \sum_{i=1}^n \left[-(a_i - b_i) \frac{\phi'^2}{\phi\bar{\phi}} \ln \frac{\psi_i}{q_i} \left(\ln \frac{\phi\bar{p^*}}{\bar{\phi}p^*} \right)^{-1} + \frac{(a_i - b_i)^2 \phi'^2}{\psi_i} \right]$$

For convenience, we define $q_i = a_i p^* + b_i \bar{p^*}$ and $\psi_i = a_i \phi + b_i \bar{\phi}$.

$$D((W\Phi_{X,t})_Y || (WP)_Y) = \sum_{i=1}^n \psi_i \ln \frac{\psi_i}{q_i}$$

For concavity: We want $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y || (WP)_Y) \le 0.$ We get (using the linearity of parameterization)

$$\frac{d^2}{dt^2} D((W\Phi_{X,t})_Y \| (WP)_Y) \stackrel{(a)}{=} \sum_{i=1}^n \left[-(a_i - b_i) \frac{\phi'^2}{\phi\bar{\phi}} \ln \frac{\psi_i}{q_i} \left(\ln \frac{\phi\bar{p^*}}{\bar{\phi}p^*} \right)^{-1} + \frac{(a_i - b_i)^2 \phi'^2}{\psi_i} \right]$$

 $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y\|(WP)_Y)\leq 0$ is equivalent to

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}^*}{\bar{\phi} p^*} \right] \begin{cases} \ge 0, & 0 \le \phi \le p^*; \\ \le 0, & p^* \le \phi \le 1. \end{cases}$$

To show

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}^*}{\bar{\phi} p^*} \right] \begin{cases} \ge 0, & 0 \le \phi \le p^*; \\ \le 0, & p^* \le \phi \le 1. \end{cases}$$

Sufficiency of $p = p^*$

To show

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}^*}{\bar{\phi} p^*} \right] \begin{cases} \ge 0, & 0 \le \phi \le p^*; \\ \le 0, & p^* \le \phi \le 1. \end{cases}$$

Observe that $f(p^*; p^*) = 0$.

Suffices to show that $f(\phi; p^*)$ is decreasing on $0 \le \phi \le 1$.

Let $g(\phi) := \sum_{i=1}^{n} \frac{a_i b_i (a_i - b_i)}{(a_i \phi + b_i \overline{\phi})^2}$, then $\frac{d}{d\phi} f(\phi; p^*) = g(\phi) \ln \frac{\phi \overline{p}^*}{\phi p^*}$.

 $f(\phi;p^*)$ is decreasing on $0 \leq \phi \leq 1$ is equivalent to

$$g(\phi) \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$

Sufficiency of $p = p^*$

To show

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}^*}{\bar{\phi} p^*} \right] \begin{cases} \ge 0, & 0 \le \phi \le p^*; \\ \le 0, & p^* \le \phi \le 1. \end{cases}$$

Observe that $f(p^*; p^*) = 0$.

Suffices to show that $f(\phi; p^*)$ is decreasing on $0 \le \phi \le 1$.

Let $g(\phi) := \sum_{i=1}^{n} \frac{a_i b_i (a_i - b_i)}{(a_i \phi + b_i \bar{\phi})^2}$, then $\frac{d}{d\phi} f(\phi; p^*) = g(\phi) \ln \frac{\phi \bar{p}^*}{\phi p^*}$.

 $f(\phi;p^*)$ is decreasing on $0 \leq \phi \leq 1$ is equivalent to

$$g(\phi) \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$

Observe that $g(p^*) = 0$. (definition of p^*).

Suffices to show that $g(\phi)$ is decreasing on $0 \le \phi \le 1$.

Sufficiency of $p = p^*$

To show

$$f(\phi; p^*) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}^*}{\bar{\phi} p^*} \right] \begin{cases} \ge 0, & 0 \le \phi \le p^*; \\ \le 0, & p^* \le \phi \le 1. \end{cases}$$

Observe that $f(p^*; p^*) = 0$.

Suffices to show that $f(\phi; p^*)$ is decreasing on $0 \le \phi \le 1$.

Let $g(\phi) := \sum_{i=1}^{n} \frac{a_i b_i (a_i - b_i)}{(a_i \phi + b_i \bar{\phi})^2}$, then $\frac{d}{d\phi} f(\phi; p^*) = g(\phi) \ln \frac{\phi \bar{p}^*}{\phi p^*}$.

 $f(\phi;p^*)$ is decreasing on $0 \leq \phi \leq 1$ is equivalent to

$$g(\phi) \begin{cases} \geq 0, & 0 \leq \phi \leq p^*; \\ \leq 0, & p^* \leq \phi \leq 1. \end{cases}$$

Taking derivative of $g(\phi)$ gives

$$\frac{d}{d\phi}g(\phi) = -\sum_{i=1}^{n} \frac{2(a_i - b_i)^2 a_i b_i}{(a_i \phi + b_i \bar{\phi})^3} < 0 \qquad \Box$$

Necessity of $p = p^*$

Assume concavity, i.e. $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y||(WP)_Y) \le 0$

$$f(\phi;p) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}}{\bar{\phi} p} \right] \begin{cases} \ge 0, & 0 \le \phi \le p; \\ \le 0, & p \le \phi \le 1. \end{cases}$$

Taylor expansion around $\phi = p$ gives

$$f(p+\varepsilon;p) = \frac{\partial^2 f(\phi;p)}{\partial \phi^2} \bigg|_{\phi=p} \varepsilon^2 + O(\varepsilon^3).$$

Note that we used $f(p;p) = \frac{\partial f(\phi;p)}{\partial \phi}\Big|_{\phi=p} = 0.$

Necessity of $p = p^*$

Assume concavity, i.e. $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y||(WP)_Y) \le 0$

$$f(\phi;p) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}}{\bar{\phi} p} \right] \begin{cases} \ge 0, & 0 \le \phi \le p; \\ \le 0, & p \le \phi \le 1. \end{cases}$$

Taylor expansion around $\phi=p$ gives

$$f(p+\varepsilon;p) = \frac{\partial^2 f(\phi;p)}{\partial \phi^2} \Big|_{\phi=p} \varepsilon^2 + O(\varepsilon^3).$$

Note that we used $f(p;p) = \frac{\partial f(\phi;p)}{\partial \phi}\Big|_{\phi=p} = 0.$ The concavity condition forces that

$$\left. \frac{\partial^2 f(\phi;p)}{\partial \phi^2} \right|_{\phi=p} = \frac{1}{p\bar{p}}g(p) = 0.$$

Necessity of $p = p^*$

Assume concavity, i.e. $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y||(WP)_Y) \le 0$

$$f(\phi;p) := \sum_{i=1}^{n} \left[-(a_i - b_i) \ln \frac{\psi_i}{q_i} + (a_i - b_i)^2 \frac{\phi \bar{\phi}}{\psi_i} \ln \frac{\phi \bar{p}}{\bar{\phi} p} \right] \begin{cases} \ge 0, & 0 \le \phi \le p; \\ \le 0, & p \le \phi \le 1. \end{cases}$$

Taylor expansion around $\phi=p$ gives

$$f(p+\varepsilon;p) = \frac{\partial^2 f(\phi;p)}{\partial \phi^2} \bigg|_{\phi=p} \varepsilon^2 + O(\varepsilon^3).$$

Note that we used $f(p;p) = \frac{\partial f(\phi;p)}{\partial \phi}\Big|_{\phi=p} = 0.$ The concavity condition forces that

$$\left. \frac{\partial^2 f(\phi; p)}{\partial \phi^2} \right|_{\phi=p} = \frac{1}{p\bar{p}} g(p) = 0. \qquad g(p) = 0 \iff p = p^*$$

Therefore, $\frac{d^2}{dt^2}D((W\Phi_{X,t})_Y||(WP)_Y) \le 0$ only if $p = p^*$.

We still have one-sided concavity when $p \neq p^*$.

Theorem (one-sided concavity for $p \neq p^*$)

- If $p > p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [p, 1]$.
- If $p < p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [0, p]$.

We still have one-sided concavity when $p \neq p^*$.

Theorem (one-sided concavity for $p \neq p^*$)

- If $p > p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [p, 1]$.
- If $p < p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [0, p]$.

Unfortunately, it is not necessarily concave in the remaining segment.

We still have one-sided concavity when $p \neq p^*$.

Theorem (one-sided concavity for $p \neq p^*$)

- If $p > p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [p, 1]$.
- If $p < p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [0, p]$.

Unfortunately, it is not necessarily concave in the remaining segment.

Natural question: Are there other parameterizations of ϕ_X that makes the functional $\lambda D(\Phi_{X,t} || P_X) - D((W\Phi_{X,t})_Y || (WP)_Y)$ convex for $p \neq p^*$.

We still have one-sided concavity when $p \neq p^*$.

Theorem (one-sided concavity for $p \neq p^*$)

- If $p > p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [p, 1]$.
- If $p < p^*$, $D((W\Phi_{X,t})_Y || (WP)_Y)$ is concave on $\phi \in [0, p]$.

Unfortunately, it is not necessarily concave in the remaining segment.

Natural question: Are there other parameterizations of ϕ_X that makes the functional $\lambda D(\Phi_{X,t} || P_X) - D((W \Phi_{X,t})_Y || (WP)_Y)$ convex for $p \neq p^*$.

Answer: No

Lack of parametrization

Consider a BSC with $\epsilon = 0.3$, when $p = 0.4 \neq p^* = 0.5$ and $\lambda = 0.1584$.

Lack of parametrization

Consider a BSC with $\epsilon = 0.3$, when $p = 0.4 \neq p^* = 0.5$ and $\lambda = 0.1584$.

- Any parametrization using a submersion (differentiable map) will map strict local maximizers to strict local maximizers
- No convex function can have an interior local maximizer.
- $\bullet\,$ Impossible to reparameterize in the regime [0.4,1] into a convex function.

Given a *m*-to-*n* channel *W*, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \ge 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

 $\phi(t) := (\phi(t), \alpha - \phi(t), \phi_3, \dots \phi_n)$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^n \phi_i = 1 - \alpha$.

Given a *m*-to-*n* channel *W*, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \ge 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

 $\boldsymbol{\phi}(t) := (\phi(t), \alpha - \phi(t), \phi_3, \dots \phi_n)$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^n \phi_i = 1 - \alpha$.

Corollary

Then there exists a P_X on this interval and a similar $\Phi_{X,t}$ of this interval that makes

 $\lambda D(\Phi_{X,t} \| P_X) - D((W\Phi_{X,t})_Y \| (WP)_Y)$

convex in t.

Given a *m*-to-*n* channel *W*, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \ge 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

 $\boldsymbol{\phi}(t) := (\phi(t), \alpha - \phi(t), \phi_3, \dots \phi_n)$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^n \phi_i = 1 - \alpha$.

Corollary

Then there exists a P_X on this interval and a similar $\Phi_{X,t}$ of this interval that makes

 $\lambda D(\Phi_{X,t} \| P_X) - D((W\Phi_{X,t})_Y \| (WP)_Y)$

convex in t.

Previous one-sided concavity result also generalizes to this setting.

Given a *m*-to-*n* channel *W*, suppose $\phi(t) \in \Delta^{m-1}$ is an interval parametrized by $t \ge 0$ s.t. all coordinates are fixed except for two. W.l.o.g., we let

 $\boldsymbol{\phi}(t) := (\phi(t), \alpha - \phi(t), \phi_3, \dots \phi_n)$

where $\phi_i, i = 3, 4, ..., n$ are constants and $\sum_{i=3}^n \phi_i = 1 - \alpha$.

Corollary

Then there exists a P_X on this interval and a similar $\Phi_{X,t}$ of this interval that makes

 $\lambda D(\Phi_{X,t} \| P_X) - D((W\Phi_{X,t})_Y \| (WP)_Y)$

convex in t.

Proof: Effectively reduces to a new 2-to-n channel.

Can we find a path from ϕ_X to (some) p_X^* so that under a suitable parametrization

 $\lambda D(\Phi_{X,t} \| P_X) - D((W\Phi_{X,t})_Y \| (WP)_Y)$

is convex in t.

Can we find a path from ϕ_X to (some) p_X^* so that under a suitable parametrization $\lambda D(\Phi_{X,t} || P_X) - D((W \Phi_{X,t})_Y || (WP)_Y)$

is convex in t.

- In binary input, the path was fixed (since the space is a line).
- In higher alphabets, there are many possible choices for paths between two points (even in some fixed partition of the space)

Can we find a path from ϕ_X to (some) p_X^* so that under a suitable parametrization $\lambda D(\Phi_{X,t} || P_X) - D((W \Phi_{X,t})_Y || (WP)_Y)$

is convex in t.

Consider the following 3-SC:

$$W(y|x) = \begin{bmatrix} 0.55 & 0.15 & 0.15 \\ 0.15 & 0.55 & 0.15 \\ 0.15 & 0.15 & 0.55 \end{bmatrix}.$$

A natural guess for p^* is $P_X = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ by symmetry.

Can we find a path from ϕ_X to (some) p_X^* so that under a suitable parametrization

 $\lambda D(\Phi_{X,t} \| P_X) - D((W\Phi_{X,t})_Y \| (WP)_Y)$

is convex in t.

When $\lambda = 0.309$, there are has four local minimizers.

What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers

What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers

Related Work

- *n*-SC: all local minimizers lie on the paths connecting the center $P_X = \frac{1}{n} \mathbf{1}_n$ and e_i 's (the vertices).
- This is a one-dimensional space. And there is at most one local minimizer on each path excluding the center.

What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers

Related Work

- *n*-SC: all local minimizers lie on the paths connecting the center $P_X = \frac{1}{n} \mathbf{1}_n$ and e_i 's (the vertices).
- This is a one-dimensional space. And there is at most one local minimizer on each path excluding the center.

Such results may be obtainable using the ideas here.

- They could be useful for designing algorithms
- They could be useful in establishing capacity regions

What can be done: potential future directions

- Perhaps it is possible to restrict the locations of the local minimizers
- Establish some properties of local minimizers

Related Work

- *n*-SC: all local minimizers lie on the paths connecting the center $P_X = \frac{1}{n} \mathbf{1}_n$ and e_i 's (the vertices).
- This is a one-dimensional space. And there is at most one local minimizer on each path excluding the center.

Such results may be obtainable using the ideas here.

- They could be useful for designing algorithms
- They could be useful in establishing capacity regions

Thank you for watching our presentation

