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Motivation

This talk is motivated by the study of non-convex optimization problems in network
information theory.
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Motivation

Motivation - 1 (Distributed Source Coding)
Let (Xn, Y n) be a sequence of discrete random variables that are generated i.i.d.
according to PXY , denoted as 2-DMS, and the decoder would like to recover Y n.

Xn ∈ X n

Y n ∈ Yn

Encoder 1

Encoder 2

MX ∈ [1 : 2bnRXc]

MY ∈ [1 : 2bnRY c]

Decoder Ŷ n

Figure 1: Distributed Source Coding With One Helper
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Figure 1: Distributed Source Coding With One Helper

A rate pair (RX , RY ) is achievable if there exists a sequence of (n,RX , RY )-codes
such that the Pr(Ŷ n 6= Y n)→ 0 as n→∞.

Source Coding Problem [Ahlswede-Körner, ’75]
What rate pairs (RX , RY ) are achievable under the above setting?
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Motivation - 1 (Distributed Source Coding)

Source Coding Problem - Optimal Rate Region [Ahlswede-Körner, ’75]
Given a 2-DMS PXY , the optimal rate region is given by,

RX ≥ I(U ;X)
RY ≥ H(Y |U),

for some distribution PU |X such that U → X → Y forms a Markov chain. Moreover,
it suffices to consider |U| ≤ |X |+ 1.

Evaluation of the region: using weighted sum-rates
The minimum λ-sum rate λRX +RY is,

min
pU|X

H(Y |U) + λI(U ;X)

= λH(X)−max
pU|X
{λH(X|U)−H(Y |U)}

= λH(X)− C[λH(X)−H(Y )](PX).

Non-trivial regime: λ ∈ (0, 1).
The above optimization problem is a non-convex optimization problem in general.
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Motivation - 1 (Distributed Source Coding)
Upper Concave Envelope and Duality (Fenchel)

Define f(ΦX) := λH(X)−H(Y ).
C[f ] is the upper concave envelope of the function f .

Upper Concave Envelope

CΦX [f ] := inf {g : g is concave w.r.t. ΦX and g(ΦX) ≥ f(ΦX),∀ΦX}
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Define f(ΦX) := λH(X)−H(Y ).
C[f ] is the upper concave envelope of the function f .

Upper Concave Envelope

CΦX [f ] := inf {g : g is concave w.r.t. ΦX and g(ΦX) ≥ f(ΦX),∀ΦX}

From an optimization perspective
Computing the concave envelope is not easy (in general)

Essentially the difficulty can be translated into that of computing the dual
function
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C[f ] is the upper concave envelope of the function f .

Upper Concave Envelope

CΦX [f ] := inf {g : g is concave w.r.t. ΦX and g(ΦX) ≥ f(ΦX),∀ΦX}

Fenchel’s Dual Representation
Given dX = (dx, x ∈ X ) a real-valued vector of length |X |, the Fenchel-dual of the
function is

f †(dX) := sup
ΦX

{
f(ΦX)−

∑
x∈X

dxΦX(x)
}
.

The dual variables dx define hyperplanes, and f †(dX) is convex in dX .
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Given dX = (dx, x ∈ X ) a real-valued vector of length |X |, the Fenchel-dual of the
function is

f †(dX) := sup
ΦX

{
f(ΦX)−

∑
x∈X

dxΦX(x)
}
.

CΦX [f ](PX) = inf
dX

{
f †(dX) +

∑
x∈X

dxPX(x)
}

The dual of the dual yields the upper concave envelope.
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Motivation - 1 (Distributed Source Coding)
Plot of Upper Concave Envelope

Simple Observation: Suffices to consider gradients (dual variables) at interior
distributions PX .

Figure 2: Illustration of an upper concave envelopeDing-Lau-Nair-Wang Concavity of relative entropy ISIT 2021 5 / 19



Motivation - 1 (Distributed Source Coding)
Dual representation

f(ΦX) = λH(ΦX)−H((WΦ)Y ).

Let PX be an interior distribution.
The gradient induced here, say dX , is given by

dX = ∂f(ΦX)
∂ΦX

∣∣∣∣∣
PX

= −λ lnPX +
∑
y

WY |X lnPY .

f †(dX) := sup
ΦX

{
f(ΦX)−

∑
x∈X

dxΦX(x)
}

Substituting the above dX into f †, we have,

f †(dX) = − inf
ΦX
{λD(ΦX ||PX)−D((WΦ)Y ||(WP )Y )} .
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Related Work

[Ahlswede-Körner, ’74] showed that given 2-to-2 DMC WY |X , the following function
is convex in c.

f1(c) := inf
H(X)≥c

H(Y )

[Witsenhausen-Wyner, ’74] showed that given any discrete memoryless channel
(DMC) WY |X and an input distribution PX , for any Markov chain U → X → Y
where U is discrete r.v., the function

f2(c) := inf
H(X|U)=c

H(Y |U)

is convex in c.

They explicitly calculated the function infH(X|U)=cH(Y |U) for BSC, BEC and Z
channels (essentially using Fenchel duality).

This work: we are looking at (essentially) the same problem from an optimization
perspective for arbitrary 2-to-n channels.
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Motivation - 2

Given λ ∈ (0, 1), WY |X , and µX .
View W as a Markov operator T , where for f(Y ) we have Tf = E(f |X).
Define

cλ = inf{c : E(exp(T ln f)) ≤ ‖f‖λe
c
λ , ∀f(Y ) > 0}.

Also define

mλ := inf
νX :µX�νX

λD(νX‖µX)−D((Wν)Y ‖(Wµ)Y ).

Theorem (Corollary of Ahlswede-Gacs ’76)
mλ = −cλ.

Related to strong data processing inequalities

Original Motivation: This is the simplest case of a similar functional appearing
in the evaluation of Marton’s inner bound for broadcast channels
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Main Problem

Non-Convex Optimization Problem

min
ΦX :ΦX�PX

{λD(ΦX‖PX)−D((WΦ)Y ‖(WP )Y )}

λ ∈ (0, 1)
WY |X : a discrete memoryless channel
PX : a fixed “source/input” distribution
(WP )Y : channel induced output distribution

Both D(ΦX‖PX) and D((WΦ)Y ‖(WP )Y ) are convex in ΦX .
The difference is non-convex in general.
Idea: We want to make D(ΦX‖PX) linear in parameter t and hope that
D((WΦ)Y ‖(WP )Y ) becomes concave.
This parameterization is motivated by [Vishnoi-Sra-Yildiz ’18] for positive
definite matrices where they reformulate the problem of computing the
Brascamp-Lieb constant into convex optimization.
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Reparametrization

Given PX , since the input space is binary, denote ΦX(0) = φ, PX(0) = p, we have

D(ΦX‖PX) = φ ln φ
p

+ φ̄ ln φ̄
p̄
.

We divide the space into two intervals: [0, p] and [p, 1]

When φ ∈ [0, p], D(ΦX‖PX) is decreasing in φ. In this range, we define Φt by

D(φt‖p) := (1− t)D(0‖p) + tD(p‖p) = (1− t) ln
( 1

1− p

)
.

When φ ∈ [p, 1], D(ΦX‖PX) is increasing in φ. In this range, we define Φt by

D(φt‖p) := (1− t)D(p‖p) + tD(1‖p) = t ln
(1
p

)
.

When pX is uniform, then in [0, 1
2 ], we have

1−H2(φt) = D

(
φt

∥∥∥∥1
2

)
= (1− t).

Hence φt = H−1
2 (t). (parameterization used in Mrs. Gerber’s lemma)
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Main Result

Consider a 2-to-n channel WY |X as follows.

WY |X =


a1 b1
a2 b2
...

...
an bn


Here Wij = P (Y = i|X = j). Let ΦX,t := (φt, φt) w.r.t. t, where φt = 1− φt.

Theorem
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
Here Wij = P (Y = i|X = j). Let ΦX,t := (φt, φt) w.r.t. t, where φt = 1− φt.

Theorem
Under the previous reparameterization, D((WΦX,t)Y ‖(WP )Y ) is concave in t, if
p = p∗ where p∗ is the unique solution to

n∑
i=1

(ai − bi)aibi
(pai + p̄bi)2 = 0. (1)

This generalizes Mrs. Gerber’s lemma to other channels.
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Main Result

Consider a 2-to-n channel WY |X as follows.

WY |X =


a1 b1
a2 b2
...

...
an bn


Here Wij = P (Y = i|X = j). Let ΦX,t := (φt, φt) w.r.t. t, where φt = 1− φt.

Theorem
Under the previous reparameterization, D((WΦX,t)Y ‖(WP )Y ) is concave in t,
only if p = p∗ where p∗ is the unique solution to

n∑
i=1

(ai − bi)aibi
(pai + p̄bi)2 = 0.
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Sufficiency of p = p∗

For convenience, we define qi = aip
∗ + bip̄∗ and ψi = aiφ+ biφ̄.

D((WΦX,t)Y ‖(WP )Y ) =
n∑
i=1

ψi ln ψi
qi
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For convenience, we define qi = aip
∗ + bip̄∗ and ψi = aiφ+ biφ̄.

D((WΦX,t)Y ‖(WP )Y ) =
n∑
i=1

ψi ln ψi
qi

For concavity: We want d2

dt2D((WΦX,t)Y ‖(WP )Y ) ≤ 0.

We get (using the linearity of parameterization)

d2

dt2
D((WΦX,t)Y ‖(WP )Y ) (a)=

n∑
i=1

−(ai − bi)
φ′2

φφ̄
ln ψi
qi

(
ln φp̄

∗

φ̄p∗

)−1

+ (ai − bi)2φ′2

ψi



d2

dt2D((WΦX,t)Y ‖(WP )Y ) ≤ 0 is equivalent to

f(φ; p∗) :=
n∑
i=1

[
−(ai − bi) ln ψi

qi
+ (ai − bi)2φφ̄

ψi
ln φp̄

∗

φ̄p∗

]{
≥ 0, 0 ≤ φ ≤ p∗;
≤ 0, p∗ ≤ φ ≤ 1.
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f(φ; p∗) is decreasing on 0 ≤ φ ≤ 1 is equivalent to

g(φ)
{
≥ 0, 0 ≤ φ ≤ p∗;
≤ 0, p∗ ≤ φ ≤ 1.

Observe that g(p∗) = 0. (definition of p∗).

Suffices to show that g(φ) is decreasing on 0 ≤ φ ≤ 1.
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(aiφ+biφ̄)2 , then d

dφf(φ; p∗) = g(φ) ln φp̄∗

φ̄p∗
.

f(φ; p∗) is decreasing on 0 ≤ φ ≤ 1 is equivalent to

g(φ)
{
≥ 0, 0 ≤ φ ≤ p∗;
≤ 0, p∗ ≤ φ ≤ 1.

Taking derivative of g(φ) gives

d

dφ
g(φ) = −

n∑
i=1

2(ai − bi)2aibi

(aiφ+ biφ̄)3 < 0
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Necessity of p = p∗

Assume concavity, i.e. d2

dt2D((WΦX,t)Y ‖(WP )Y ) ≤ 0

f(φ; p) :=
n∑
i=1

[
−(ai − bi) ln ψi

qi
+ (ai − bi)2φφ̄

ψi
ln φp̄
φ̄p

]{
≥ 0, 0 ≤ φ ≤ p;
≤ 0, p ≤ φ ≤ 1.

Taylor expansion around φ = p gives

f(p+ ε; p) = ∂2f(φ; p)
∂φ2

∣∣∣∣∣
φ=p

ε2 +O(ε3).

Note that we used f(p; p) = ∂f(φ;p)
∂φ

∣∣∣
φ=p

= 0.

The concavity condition forces that

∂2f(φ; p)
∂φ2

∣∣∣∣∣
φ=p

= 1
pp̄
g(p) = 0.

g(p) = 0 ⇐⇒ p = p∗

Therefore, d2

dt2D((WΦX,t)Y ‖(WP )Y ) ≤ 0 only if p = p∗.
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∂φ2

∣∣∣∣∣
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pp̄
g(p) = 0. g(p) = 0 ⇐⇒ p = p∗
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When p 6= p∗

We still have one-sided concavity when p 6= p∗.

Theorem (one-sided concavity for p 6= p∗)
If p > p∗, D((WΦX,t)Y ‖(WP )Y ) is concave on φ ∈ [p, 1].
If p < p∗, D((WΦX,t)Y ‖(WP )Y ) is concave on φ ∈ [0, p].

Unfortunately, it is not necessarily concave in the remaining segment.

Natural question: Are there other parameterizations of φX that makes the functional
λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y ) convex for p 6= p∗.

Answer: No
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Lack of parametrization

Consider a BSC with ε = 0.3, when p = 0.4 6= p∗ = 0.5 and λ = 0.1584.

0.4 0.45 0.5 0.55 0.6 0.65
-0.0001

0

0.0001

0.0002

0.0003

0.0004

φ

λ 
D

(Φ
X

||P
X

)-
D

((
W

Φ
) Y

||(
W

P
) Y

)

Any parametrization using a submersion (differentiable map) will map strict
local maximizers to strict local maximizers

No convex function can have an interior local maximizer.

Impossible to reparameterize in the regime [0.4, 1] into a convex function.
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Beyond binary inputs

Given a m-to-n channel W , suppose φ(t) ∈ ∆m−1 is an interval parametrized by
t ≥ 0 s.t. all coordinates are fixed except for two. W.l.o.g., we let

φ(t) := (φ(t), α− φ(t), φ3, ...φn)

where φi, i = 3, 4, ..., n are constants and
∑n
i=3 φi = 1− α.

Corollary
Then there exists a PX on this interval and a similar ΦX,t of this interval that makes

λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y )

convex in t.

Previous one-sided concavity result also generalizes to this setting.

Proof: Effectively reduces to a new 2-to-n channel.
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Issues with generalization to higher alphabets

Can we find a path from φX to (some) p∗X so that under a suitable parametrization

λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y )

is convex in t.
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Can we find a path from φX to (some) p∗X so that under a suitable parametrization

λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y )

is convex in t.

In binary input, the path was fixed (since the space is a line).
In higher alphabets, there are many possible choices for paths between two
points (even in some fixed partition of the space)
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Issues with generalization to higher alphabets

Can we find a path from φX to (some) p∗X so that under a suitable parametrization

λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y )

is convex in t.

Consider the following 3-SC:

W (y|x) =

0.55 0.15 0.15
0.15 0.55 0.15
0.15 0.15 0.55

 .
A natural guess for p∗ is PX =

(1
3 ,

1
3 ,

1
3
)

by symmetry.
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Issues with generalization to higher alphabets

Can we find a path from φX to (some) p∗X so that under a suitable parametrization

λD(ΦX,t‖PX)−D((WΦX,t)Y ‖(WP )Y )

is convex in t.

When λ = 0.309, there are has four local minimizers.

Ding-Lau-Nair-Wang Concavity of relative entropy ISIT 2021 18 / 19



Remarks and future directions

What can be done: potential future directions
Perhaps it is possible to restrict the locations of the local minimizers
Establish some properties of local minimizers

Related Work
n-SC: all local minimizers lie on the paths connecting the center PX = 1

n1n and
ei’s (the vertices).
This is a one-dimensional space. And there is at most one local minimizer on
each path excluding the center.

Such results may be obtainable using the ideas here.
They could be useful for designing algorithms
They could be useful in establishing capacity regions

Thank you for watching our presentation
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